dragonpilot - 基於 openpilot 的開源駕駛輔助系統
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

141 lines
4.1 KiB

#include "acado_common.h"
#include "acado_auxiliary_functions.h"
#include <stdio.h>
#include <math.h>
#define NX ACADO_NX /* Number of differential state variables. */
#define NXA ACADO_NXA /* Number of algebraic variables. */
#define NU ACADO_NU /* Number of control inputs. */
#define NOD ACADO_NOD /* Number of online data values. */
#define NY ACADO_NY /* Number of measurements/references on nodes 0..N - 1. */
#define NYN ACADO_NYN /* Number of measurements/references on node N. */
#define N ACADO_N /* Number of intervals in the horizon. */
ACADOvariables acadoVariables;
ACADOworkspace acadoWorkspace;
typedef struct {
double x_ego, v_ego, a_ego;
} state_t;
typedef struct {
double x_ego[N+1];
double v_ego[N+1];
double a_ego[N+1];
double t[N+1];
double j_ego[N];
double cost;
} log_t;
void init(double xCost, double vCost, double aCost, double accelCost, double jerkCost){
acado_initializeSolver();
int i;
const int STEP_MULTIPLIER = 3;
/* Initialize the states and controls. */
for (i = 0; i < NX * (N + 1); ++i) acadoVariables.x[ i ] = 0.0;
for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.0;
/* Initialize the measurements/reference. */
for (i = 0; i < NY * N; ++i) acadoVariables.y[ i ] = 0.0;
for (i = 0; i < NYN; ++i) acadoVariables.yN[ i ] = 0.0;
/* MPC: initialize the current state feedback. */
for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
// Set weights
for (i = 0; i < N; i++) {
int f = 1;
if (i > 4){
f = STEP_MULTIPLIER;
}
// Setup diagonal entries
acadoVariables.W[NY*NY*i + (NY+1)*0] = xCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*1] = vCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*2] = aCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*3] = accelCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*4] = jerkCost * f;
}
acadoVariables.WN[(NYN+1)*0] = xCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*1] = vCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*2] = aCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*3] = accelCost * STEP_MULTIPLIER;
}
void init_with_simulation(double v_ego){
int i;
double x_ego = 0.0;
double dt = 0.2;
double t = 0.0;
for (i = 0; i < N + 1; ++i){
if (i > 4){
dt = 0.6;
}
acadoVariables.x[i*NX] = x_ego;
acadoVariables.x[i*NX+1] = v_ego;
acadoVariables.x[i*NX+2] = 0;
acadoVariables.x[i*NX+3] = t;
x_ego += v_ego * dt;
t += dt;
}
for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.0;
for (i = 0; i < NY * N; ++i) acadoVariables.y[ i ] = 0.0;
for (i = 0; i < NYN; ++i) acadoVariables.yN[ i ] = 0.0;
}
int run_mpc(state_t * x0, log_t * solution,
double x_poly[4], double v_poly[4], double a_poly[4]){
int i;
for (i = 0; i < N + 1; ++i){
acadoVariables.od[i*NOD+0] = x_poly[0];
acadoVariables.od[i*NOD+1] = x_poly[1];
acadoVariables.od[i*NOD+2] = x_poly[2];
acadoVariables.od[i*NOD+3] = x_poly[3];
acadoVariables.od[i*NOD+4] = v_poly[0];
acadoVariables.od[i*NOD+5] = v_poly[1];
acadoVariables.od[i*NOD+6] = v_poly[2];
acadoVariables.od[i*NOD+7] = v_poly[3];
acadoVariables.od[i*NOD+8] = a_poly[0];
acadoVariables.od[i*NOD+9] = a_poly[1];
acadoVariables.od[i*NOD+10] = a_poly[2];
acadoVariables.od[i*NOD+11] = a_poly[3];
}
acadoVariables.x[0] = acadoVariables.x0[0] = x0->x_ego;
acadoVariables.x[1] = acadoVariables.x0[1] = x0->v_ego;
acadoVariables.x[2] = acadoVariables.x0[2] = x0->a_ego;
acadoVariables.x[3] = acadoVariables.x0[3] = 0;
acado_preparationStep();
acado_feedbackStep();
for (i = 0; i <= N; i++){
solution->x_ego[i] = acadoVariables.x[i*NX];
solution->v_ego[i] = acadoVariables.x[i*NX+1];
solution->a_ego[i] = acadoVariables.x[i*NX+2];
solution->t[i] = acadoVariables.x[i*NX+3];
if (i < N){
solution->j_ego[i] = acadoVariables.u[i];
}
}
solution->cost = acado_getObjective();
// Dont shift states here. Current solution is closer to next timestep than if
// we shift by 0.1 seconds.
return acado_getNWSR();
}