|  |  |  | #!/usr/bin/env python3
 | 
					
						
							|  |  |  | import math
 | 
					
						
							|  |  |  | import sys
 | 
					
						
							|  |  |  | from typing import Any
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
 | 
					
						
							|  |  |  | from openpilot.selfdrive.locationd.models.constants import ObservationKind
 | 
					
						
							|  |  |  | from openpilot.common.swaglog import cloudlog
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from rednose.helpers.kalmanfilter import KalmanFilter
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__':  # Generating sympy
 | 
					
						
							|  |  |  |   import sympy as sp
 | 
					
						
							|  |  |  |   from rednose.helpers.ekf_sym import gen_code
 | 
					
						
							|  |  |  | else:
 | 
					
						
							|  |  |  |   from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | i = 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def _slice(n):
 | 
					
						
							|  |  |  |   global i
 | 
					
						
							|  |  |  |   s = slice(i, i + n)
 | 
					
						
							|  |  |  |   i += n
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return s
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class States:
 | 
					
						
							|  |  |  |   # Vehicle model params
 | 
					
						
							|  |  |  |   STIFFNESS = _slice(1)  # [-]
 | 
					
						
							|  |  |  |   STEER_RATIO = _slice(1)  # [-]
 | 
					
						
							|  |  |  |   ANGLE_OFFSET = _slice(1)  # [rad]
 | 
					
						
							|  |  |  |   ANGLE_OFFSET_FAST = _slice(1)  # [rad]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   VELOCITY = _slice(2)  # (x, y) [m/s]
 | 
					
						
							|  |  |  |   YAW_RATE = _slice(1)  # [rad/s]
 | 
					
						
							|  |  |  |   STEER_ANGLE = _slice(1)  # [rad]
 | 
					
						
							|  |  |  |   ROAD_ROLL = _slice(1)  # [rad]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CarKalman(KalmanFilter):
 | 
					
						
							|  |  |  |   name = 'car'
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   initial_x = np.array([
 | 
					
						
							|  |  |  |     1.0,
 | 
					
						
							|  |  |  |     15.0,
 | 
					
						
							|  |  |  |     0.0,
 | 
					
						
							|  |  |  |     0.0,
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     10.0, 0.0,
 | 
					
						
							|  |  |  |     0.0,
 | 
					
						
							|  |  |  |     0.0,
 | 
					
						
							|  |  |  |     0.0
 | 
					
						
							|  |  |  |   ])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # process noise
 | 
					
						
							|  |  |  |   Q = np.diag([
 | 
					
						
							|  |  |  |     (.05 / 100)**2,
 | 
					
						
							|  |  |  |     .01**2,
 | 
					
						
							|  |  |  |     math.radians(0.02)**2,
 | 
					
						
							|  |  |  |     math.radians(0.25)**2,
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     .1**2, .01**2,
 | 
					
						
							|  |  |  |     math.radians(0.1)**2,
 | 
					
						
							|  |  |  |     math.radians(0.1)**2,
 | 
					
						
							|  |  |  |     math.radians(1)**2,
 | 
					
						
							|  |  |  |   ])
 | 
					
						
							|  |  |  |   P_initial = Q.copy()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   obs_noise: dict[int, Any] = {
 | 
					
						
							|  |  |  |     ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.05)**2),
 | 
					
						
							|  |  |  |     ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(10.0)**2),
 | 
					
						
							|  |  |  |     ObservationKind.ROAD_ROLL: np.atleast_2d(math.radians(1.0)**2),
 | 
					
						
							|  |  |  |     ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2),
 | 
					
						
							|  |  |  |     ObservationKind.STIFFNESS: np.atleast_2d(0.5**2),
 | 
					
						
							|  |  |  |     ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2),
 | 
					
						
							|  |  |  |   }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   global_vars = [
 | 
					
						
							|  |  |  |     'mass',
 | 
					
						
							|  |  |  |     'rotational_inertia',
 | 
					
						
							|  |  |  |     'center_to_front',
 | 
					
						
							|  |  |  |     'center_to_rear',
 | 
					
						
							|  |  |  |     'stiffness_front',
 | 
					
						
							|  |  |  |     'stiffness_rear',
 | 
					
						
							|  |  |  |   ]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   @staticmethod
 | 
					
						
							|  |  |  |   def generate_code(generated_dir):
 | 
					
						
							|  |  |  |     dim_state = CarKalman.initial_x.shape[0]
 | 
					
						
							|  |  |  |     name = CarKalman.name
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # vehicle models comes from The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars
 | 
					
						
							|  |  |  |     # Model used is in 6.15 with formula from 6.198
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # globals
 | 
					
						
							|  |  |  |     global_vars = [sp.Symbol(name) for name in CarKalman.global_vars]
 | 
					
						
							|  |  |  |     m, j, aF, aR, cF_orig, cR_orig = global_vars
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # make functions and jacobians with sympy
 | 
					
						
							|  |  |  |     # state variables
 | 
					
						
							|  |  |  |     state_sym = sp.MatrixSymbol('state', dim_state, 1)
 | 
					
						
							|  |  |  |     state = sp.Matrix(state_sym)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Vehicle model constants
 | 
					
						
							|  |  |  |     sf = state[States.STIFFNESS, :][0, 0]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     cF, cR = sf * cF_orig, sf * cR_orig
 | 
					
						
							|  |  |  |     angle_offset = state[States.ANGLE_OFFSET, :][0, 0]
 | 
					
						
							|  |  |  |     angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0]
 | 
					
						
							|  |  |  |     theta = state[States.ROAD_ROLL, :][0, 0]
 | 
					
						
							|  |  |  |     sa = state[States.STEER_ANGLE, :][0, 0]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     sR = state[States.STEER_RATIO, :][0, 0]
 | 
					
						
							|  |  |  |     u, v = state[States.VELOCITY, :]
 | 
					
						
							|  |  |  |     r = state[States.YAW_RATE, :][0, 0]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     A = sp.Matrix(np.zeros((2, 2)))
 | 
					
						
							|  |  |  |     A[0, 0] = -(cF + cR) / (m * u)
 | 
					
						
							|  |  |  |     A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u
 | 
					
						
							|  |  |  |     A[1, 0] = -(cF * aF - cR * aR) / (j * u)
 | 
					
						
							|  |  |  |     A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     B = sp.Matrix(np.zeros((2, 1)))
 | 
					
						
							|  |  |  |     B[0, 0] = cF / m / sR
 | 
					
						
							|  |  |  |     B[1, 0] = (cF * aF) / j / sR
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     C = sp.Matrix(np.zeros((2, 1)))
 | 
					
						
							|  |  |  |     C[0, 0] = ACCELERATION_DUE_TO_GRAVITY
 | 
					
						
							|  |  |  |     C[1, 0] = 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x = sp.Matrix([v, r])  # lateral velocity, yaw rate
 | 
					
						
							|  |  |  |     x_dot = A * x + B * (sa - angle_offset - angle_offset_fast) - C * theta
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     dt = sp.Symbol('dt')
 | 
					
						
							|  |  |  |     state_dot = sp.Matrix(np.zeros((dim_state, 1)))
 | 
					
						
							|  |  |  |     state_dot[States.VELOCITY.start + 1, 0] = x_dot[0]
 | 
					
						
							|  |  |  |     state_dot[States.YAW_RATE.start, 0] = x_dot[1]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Basic descretization, 1st order integrator
 | 
					
						
							|  |  |  |     # Can be pretty bad if dt is big
 | 
					
						
							|  |  |  |     f_sym = state + dt * state_dot
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #
 | 
					
						
							|  |  |  |     # Observation functions
 | 
					
						
							|  |  |  |     #
 | 
					
						
							|  |  |  |     obs_eqs = [
 | 
					
						
							|  |  |  |       [sp.Matrix([r]), ObservationKind.ROAD_FRAME_YAW_RATE, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([u, v]), ObservationKind.ROAD_FRAME_XY_SPEED, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([u]), ObservationKind.ROAD_FRAME_X_SPEED, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([sR]), ObservationKind.STEER_RATIO, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([sf]), ObservationKind.STIFFNESS, None],
 | 
					
						
							|  |  |  |       [sp.Matrix([theta]), ObservationKind.ROAD_ROLL, None],
 | 
					
						
							|  |  |  |     ]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, global_vars=global_vars)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0, P_initial=None):
 | 
					
						
							|  |  |  |     dim_state = self.initial_x.shape[0]
 | 
					
						
							|  |  |  |     dim_state_err = self.P_initial.shape[0]
 | 
					
						
							|  |  |  |     x_init = self.initial_x
 | 
					
						
							|  |  |  |     x_init[States.STEER_RATIO] = steer_ratio
 | 
					
						
							|  |  |  |     x_init[States.STIFFNESS] = stiffness_factor
 | 
					
						
							|  |  |  |     x_init[States.ANGLE_OFFSET] = angle_offset
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if P_initial is not None:
 | 
					
						
							|  |  |  |       self.P_initial = P_initial
 | 
					
						
							|  |  |  |     # init filter
 | 
					
						
							|  |  |  |     self.filter = EKF_sym_pyx(generated_dir, self.name, self.Q, self.initial_x, self.P_initial,
 | 
					
						
							|  |  |  |                               dim_state, dim_state_err, global_vars=self.global_vars, logger=cloudlog)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__":
 | 
					
						
							|  |  |  |   generated_dir = sys.argv[2]
 | 
					
						
							|  |  |  |   CarKalman.generate_code(generated_dir)
 |