open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

240 lines
7.7 KiB

#!/usr/bin/env python
import numpy as np
import numpy.matlib
import importlib
from collections import defaultdict, deque
import selfdrive.messaging as messaging
from selfdrive.services import service_list
from selfdrive.controls.lib.radar_helpers import Track, Cluster
from selfdrive.config import RADAR_TO_CENTER
from selfdrive.controls.lib.cluster.fastcluster_py import cluster_points_centroid
from selfdrive.swaglog import cloudlog
from cereal import car
from common.params import Params
from common.realtime import set_realtime_priority, Ratekeeper, DT_MDL
DEBUG = False
#vision point
DIMSV = 2
XV, SPEEDV = 0, 1
VISION_POINT = -1
# Time-alignment
rate = 1. / DT_MDL # model and radar are both at 20Hz
v_len = 20 # how many speed data points to remember for t alignment with rdr data
def laplacian_cdf(x, mu, b):
b = np.max([b, 1e-4])
return np.exp(-abs(x-mu)/b)
def match_vision_to_cluster(v_ego, lead, clusters):
# match vision point to best statistical cluster match
probs = []
offset_vision_dist = lead.dist - RADAR_TO_CENTER
for c in clusters:
prob_d = laplacian_cdf(c.dRel, offset_vision_dist, lead.std)
prob_y = laplacian_cdf(c.yRel, lead.relY, lead.relYStd)
prob_v = laplacian_cdf(c.vRel, lead.relVel, lead.relVelStd)
# This is isn't exactly right, but good heuristic
combined_prob = prob_d * prob_y * prob_v
probs.append(combined_prob)
idx = np.argmax(probs)
# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs(clusters[idx].dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
vel_sane = (abs(clusters[idx].vRel - lead.relVel) < 10) or (v_ego + clusters[idx].vRel > 2)
if dist_sane and vel_sane:
return idx
else:
return None
def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
# Determine leads, this is where the essential logic happens
if len(clusters) > 0 and ready and lead_msg.prob > .5:
lead_idx = match_vision_to_cluster(v_ego, lead_msg, clusters)
else:
lead_idx = None
lead_dict = {'status': False}
if lead_idx is not None:
lead_dict = clusters[lead_idx].get_RadarState(lead_msg.prob)
elif (lead_idx is None) and ready and (lead_msg.prob > .5):
lead_dict = Cluster().get_RadarState_from_vision(lead_msg, v_ego)
if low_speed_override:
low_speed_clusters = [c for c in clusters if c.potential_low_speed_lead(v_ego)]
if len(low_speed_clusters) > 0:
lead_idx = np.argmin([c.dRel for c in low_speed_clusters])
if (not lead_dict['status']) or (low_speed_clusters[lead_idx].dRel < lead_dict['dRel']):
lead_dict = low_speed_clusters[lead_idx].get_RadarState()
return lead_dict
class RadarD(object):
def __init__(self, mocked):
self.current_time = 0
self.mocked = mocked
self.tracks = defaultdict(dict)
self.last_md_ts = 0
self.last_controls_state_ts = 0
self.active = 0
# v_ego
self.v_ego = 0.
self.v_ego_hist_t = deque([0], maxlen=v_len)
self.v_ego_hist_v = deque([0], maxlen=v_len)
self.v_ego_t_aligned = 0.
self.ready = False
def update(self, frame, delay, sm, rr, has_radar):
self.current_time = 1e-9*max([sm.logMonoTime[key] for key in sm.logMonoTime.keys()])
if sm.updated['controlsState']:
self.active = sm['controlsState'].active
self.v_ego = sm['controlsState'].vEgo
self.v_ego_hist_v.append(self.v_ego)
self.v_ego_hist_t.append(float(frame)/rate)
if sm.updated['model']:
self.ready = True
ar_pts = {}
for pt in rr.points:
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
# *** remove missing points from meta data ***
for ids in self.tracks.keys():
if ids not in ar_pts:
self.tracks.pop(ids, None)
# *** compute the tracks ***
for ids in ar_pts:
rpt = ar_pts[ids]
# align v_ego by a fixed time to align it with the radar measurement
cur_time = float(frame)/rate
self.v_ego_t_aligned = np.interp(cur_time - delay, self.v_ego_hist_t, self.v_ego_hist_v)
# create the track if it doesn't exist or it's a new track
if ids not in self.tracks:
self.tracks[ids] = Track()
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], self.v_ego_t_aligned, rpt[3])
idens = list(self.tracks.keys())
track_pts = np.array([self.tracks[iden].get_key_for_cluster() for iden in idens])
# If we have multiple points, cluster them
if len(track_pts) > 1:
cluster_idxs = cluster_points_centroid(track_pts, 2.5)
clusters = [None] * (max(cluster_idxs) + 1)
for idx in xrange(len(track_pts)):
cluster_i = cluster_idxs[idx]
if clusters[cluster_i] is None:
clusters[cluster_i] = Cluster()
clusters[cluster_i].add(self.tracks[idens[idx]])
elif len(track_pts) == 1:
# FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
cluster_idxs = [0]
clusters = [Cluster()]
clusters[0].add(self.tracks[idens[0]])
else:
clusters = []
# if a new point, reset accel to the rest of the cluster
for idx in xrange(len(track_pts)):
if self.tracks[idens[idx]].cnt <= 1:
aLeadK = clusters[cluster_idxs[idx]].aLeadK
aLeadTau = clusters[cluster_idxs[idx]].aLeadTau
self.tracks[idens[idx]].reset_a_lead(aLeadK, aLeadTau)
# *** publish radarState ***
dat = messaging.new_message()
dat.init('radarState')
dat.valid = sm.all_alive_and_valid(service_list=['controlsState', 'model'])
dat.radarState.mdMonoTime = self.last_md_ts
dat.radarState.canMonoTimes = list(rr.canMonoTimes)
dat.radarState.radarErrors = list(rr.errors)
dat.radarState.controlsStateMonoTime = self.last_controls_state_ts
if has_radar:
dat.radarState.leadOne = get_lead(self.v_ego, self.ready, clusters, sm['model'].lead, low_speed_override=True)
dat.radarState.leadTwo = get_lead(self.v_ego, self.ready, clusters, sm['model'].leadFuture, low_speed_override=False)
return dat
# fuses camera and radar data for best lead detection
def radard_thread(gctx=None):
set_realtime_priority(2)
# wait for stats about the car to come in from controls
cloudlog.info("radard is waiting for CarParams")
CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
mocked = CP.carName == "mock"
cloudlog.info("radard got CarParams")
# import the radar from the fingerprint
cloudlog.info("radard is importing %s", CP.carName)
RadarInterface = importlib.import_module('selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface
can_sock = messaging.sub_sock(service_list['can'].port)
sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])
RI = RadarInterface(CP)
# *** publish radarState and liveTracks
radarState = messaging.pub_sock(service_list['radarState'].port)
liveTracks = messaging.pub_sock(service_list['liveTracks'].port)
rk = Ratekeeper(rate, print_delay_threshold=None)
RD = RadarD(mocked)
has_radar = not CP.radarOffCan
while 1:
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
rr = RI.update(can_strings)
if rr is None:
continue
sm.update(0)
dat = RD.update(rk.frame, RI.delay, sm, rr, has_radar)
dat.radarState.cumLagMs = -rk.remaining*1000.
radarState.send(dat.to_bytes())
# *** publish tracks for UI debugging (keep last) ***
tracks = RD.tracks
dat = messaging.new_message()
dat.init('liveTracks', len(tracks))
for cnt, ids in enumerate(tracks.keys()):
dat.liveTracks[cnt] = {
"trackId": ids,
"dRel": float(tracks[ids].dRel),
"yRel": float(tracks[ids].yRel),
"vRel": float(tracks[ids].vRel),
}
liveTracks.send(dat.to_bytes())
rk.monitor_time()
def main(gctx=None):
radard_thread(gctx)
if __name__ == "__main__":
main()