You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
658 lines
22 KiB
658 lines
22 KiB
6 years ago
|
// -*- coding: utf-8
|
||
|
// vim: set fileencoding=utf-8
|
||
|
|
||
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_LEVENBERGMARQUARDT__H
|
||
|
#define EIGEN_LEVENBERGMARQUARDT__H
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
namespace LevenbergMarquardtSpace {
|
||
|
enum Status {
|
||
|
NotStarted = -2,
|
||
|
Running = -1,
|
||
|
ImproperInputParameters = 0,
|
||
|
RelativeReductionTooSmall = 1,
|
||
|
RelativeErrorTooSmall = 2,
|
||
|
RelativeErrorAndReductionTooSmall = 3,
|
||
|
CosinusTooSmall = 4,
|
||
|
TooManyFunctionEvaluation = 5,
|
||
|
FtolTooSmall = 6,
|
||
|
XtolTooSmall = 7,
|
||
|
GtolTooSmall = 8,
|
||
|
UserAsked = 9
|
||
|
};
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \ingroup NonLinearOptimization_Module
|
||
|
* \brief Performs non linear optimization over a non-linear function,
|
||
|
* using a variant of the Levenberg Marquardt algorithm.
|
||
|
*
|
||
|
* Check wikipedia for more information.
|
||
|
* http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
|
||
|
*/
|
||
|
template<typename FunctorType, typename Scalar=double>
|
||
|
class LevenbergMarquardt
|
||
|
{
|
||
|
static Scalar sqrt_epsilon()
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
return sqrt(NumTraits<Scalar>::epsilon());
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
LevenbergMarquardt(FunctorType &_functor)
|
||
|
: functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
|
||
|
|
||
|
typedef DenseIndex Index;
|
||
|
|
||
|
struct Parameters {
|
||
|
Parameters()
|
||
|
: factor(Scalar(100.))
|
||
|
, maxfev(400)
|
||
|
, ftol(sqrt_epsilon())
|
||
|
, xtol(sqrt_epsilon())
|
||
|
, gtol(Scalar(0.))
|
||
|
, epsfcn(Scalar(0.)) {}
|
||
|
Scalar factor;
|
||
|
Index maxfev; // maximum number of function evaluation
|
||
|
Scalar ftol;
|
||
|
Scalar xtol;
|
||
|
Scalar gtol;
|
||
|
Scalar epsfcn;
|
||
|
};
|
||
|
|
||
|
typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
|
||
|
typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
|
||
|
|
||
|
LevenbergMarquardtSpace::Status lmder1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol = sqrt_epsilon()
|
||
|
);
|
||
|
|
||
|
LevenbergMarquardtSpace::Status minimize(FVectorType &x);
|
||
|
LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
|
||
|
LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
|
||
|
|
||
|
static LevenbergMarquardtSpace::Status lmdif1(
|
||
|
FunctorType &functor,
|
||
|
FVectorType &x,
|
||
|
Index *nfev,
|
||
|
const Scalar tol = sqrt_epsilon()
|
||
|
);
|
||
|
|
||
|
LevenbergMarquardtSpace::Status lmstr1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol = sqrt_epsilon()
|
||
|
);
|
||
|
|
||
|
LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
|
||
|
LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType &x);
|
||
|
LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType &x);
|
||
|
|
||
|
void resetParameters(void) { parameters = Parameters(); }
|
||
|
|
||
|
Parameters parameters;
|
||
|
FVectorType fvec, qtf, diag;
|
||
|
JacobianType fjac;
|
||
|
PermutationMatrix<Dynamic,Dynamic> permutation;
|
||
|
Index nfev;
|
||
|
Index njev;
|
||
|
Index iter;
|
||
|
Scalar fnorm, gnorm;
|
||
|
bool useExternalScaling;
|
||
|
|
||
|
Scalar lm_param(void) { return par; }
|
||
|
private:
|
||
|
|
||
|
FunctorType &functor;
|
||
|
Index n;
|
||
|
Index m;
|
||
|
FVectorType wa1, wa2, wa3, wa4;
|
||
|
|
||
|
Scalar par, sum;
|
||
|
Scalar temp, temp1, temp2;
|
||
|
Scalar delta;
|
||
|
Scalar ratio;
|
||
|
Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||
|
|
||
|
LevenbergMarquardt& operator=(const LevenbergMarquardt&);
|
||
|
};
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::lmder1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol
|
||
|
)
|
||
|
{
|
||
|
n = x.size();
|
||
|
m = functor.values();
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || m < n || tol < 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
resetParameters();
|
||
|
parameters.ftol = tol;
|
||
|
parameters.xtol = tol;
|
||
|
parameters.maxfev = 100*(n+1);
|
||
|
|
||
|
return minimize(x);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x)
|
||
|
{
|
||
|
LevenbergMarquardtSpace::Status status = minimizeInit(x);
|
||
|
if (status==LevenbergMarquardtSpace::ImproperInputParameters)
|
||
|
return status;
|
||
|
do {
|
||
|
status = minimizeOneStep(x);
|
||
|
} while (status==LevenbergMarquardtSpace::Running);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x)
|
||
|
{
|
||
|
n = x.size();
|
||
|
m = functor.values();
|
||
|
|
||
|
wa1.resize(n); wa2.resize(n); wa3.resize(n);
|
||
|
wa4.resize(m);
|
||
|
fvec.resize(m);
|
||
|
fjac.resize(m, n);
|
||
|
if (!useExternalScaling)
|
||
|
diag.resize(n);
|
||
|
eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
|
||
|
qtf.resize(n);
|
||
|
|
||
|
/* Function Body */
|
||
|
nfev = 0;
|
||
|
njev = 0;
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
if (useExternalScaling)
|
||
|
for (Index j = 0; j < n; ++j)
|
||
|
if (diag[j] <= 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
/* evaluate the function at the starting point */
|
||
|
/* and calculate its norm. */
|
||
|
nfev = 1;
|
||
|
if ( functor(x, fvec) < 0)
|
||
|
return LevenbergMarquardtSpace::UserAsked;
|
||
|
fnorm = fvec.stableNorm();
|
||
|
|
||
|
/* initialize levenberg-marquardt parameter and iteration counter. */
|
||
|
par = 0.;
|
||
|
iter = 1;
|
||
|
|
||
|
return LevenbergMarquardtSpace::NotStarted;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x)
|
||
|
{
|
||
|
using std::abs;
|
||
|
using std::sqrt;
|
||
|
|
||
|
eigen_assert(x.size()==n); // check the caller is not cheating us
|
||
|
|
||
|
/* calculate the jacobian matrix. */
|
||
|
Index df_ret = functor.df(x, fjac);
|
||
|
if (df_ret<0)
|
||
|
return LevenbergMarquardtSpace::UserAsked;
|
||
|
if (df_ret>0)
|
||
|
// numerical diff, we evaluated the function df_ret times
|
||
|
nfev += df_ret;
|
||
|
else njev++;
|
||
|
|
||
|
/* compute the qr factorization of the jacobian. */
|
||
|
wa2 = fjac.colwise().blueNorm();
|
||
|
ColPivHouseholderQR<JacobianType> qrfac(fjac);
|
||
|
fjac = qrfac.matrixQR();
|
||
|
permutation = qrfac.colsPermutation();
|
||
|
|
||
|
/* on the first iteration and if external scaling is not used, scale according */
|
||
|
/* to the norms of the columns of the initial jacobian. */
|
||
|
if (iter == 1) {
|
||
|
if (!useExternalScaling)
|
||
|
for (Index j = 0; j < n; ++j)
|
||
|
diag[j] = (wa2[j]==0.)? 1. : wa2[j];
|
||
|
|
||
|
/* on the first iteration, calculate the norm of the scaled x */
|
||
|
/* and initialize the step bound delta. */
|
||
|
xnorm = diag.cwiseProduct(x).stableNorm();
|
||
|
delta = parameters.factor * xnorm;
|
||
|
if (delta == 0.)
|
||
|
delta = parameters.factor;
|
||
|
}
|
||
|
|
||
|
/* form (q transpose)*fvec and store the first n components in */
|
||
|
/* qtf. */
|
||
|
wa4 = fvec;
|
||
|
wa4.applyOnTheLeft(qrfac.householderQ().adjoint());
|
||
|
qtf = wa4.head(n);
|
||
|
|
||
|
/* compute the norm of the scaled gradient. */
|
||
|
gnorm = 0.;
|
||
|
if (fnorm != 0.)
|
||
|
for (Index j = 0; j < n; ++j)
|
||
|
if (wa2[permutation.indices()[j]] != 0.)
|
||
|
gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
|
||
|
|
||
|
/* test for convergence of the gradient norm. */
|
||
|
if (gnorm <= parameters.gtol)
|
||
|
return LevenbergMarquardtSpace::CosinusTooSmall;
|
||
|
|
||
|
/* rescale if necessary. */
|
||
|
if (!useExternalScaling)
|
||
|
diag = diag.cwiseMax(wa2);
|
||
|
|
||
|
do {
|
||
|
|
||
|
/* determine the levenberg-marquardt parameter. */
|
||
|
internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
|
||
|
|
||
|
/* store the direction p and x + p. calculate the norm of p. */
|
||
|
wa1 = -wa1;
|
||
|
wa2 = x + wa1;
|
||
|
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||
|
|
||
|
/* on the first iteration, adjust the initial step bound. */
|
||
|
if (iter == 1)
|
||
|
delta = (std::min)(delta,pnorm);
|
||
|
|
||
|
/* evaluate the function at x + p and calculate its norm. */
|
||
|
if ( functor(wa2, wa4) < 0)
|
||
|
return LevenbergMarquardtSpace::UserAsked;
|
||
|
++nfev;
|
||
|
fnorm1 = wa4.stableNorm();
|
||
|
|
||
|
/* compute the scaled actual reduction. */
|
||
|
actred = -1.;
|
||
|
if (Scalar(.1) * fnorm1 < fnorm)
|
||
|
actred = 1. - numext::abs2(fnorm1 / fnorm);
|
||
|
|
||
|
/* compute the scaled predicted reduction and */
|
||
|
/* the scaled directional derivative. */
|
||
|
wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1);
|
||
|
temp1 = numext::abs2(wa3.stableNorm() / fnorm);
|
||
|
temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
|
||
|
prered = temp1 + temp2 / Scalar(.5);
|
||
|
dirder = -(temp1 + temp2);
|
||
|
|
||
|
/* compute the ratio of the actual to the predicted */
|
||
|
/* reduction. */
|
||
|
ratio = 0.;
|
||
|
if (prered != 0.)
|
||
|
ratio = actred / prered;
|
||
|
|
||
|
/* update the step bound. */
|
||
|
if (ratio <= Scalar(.25)) {
|
||
|
if (actred >= 0.)
|
||
|
temp = Scalar(.5);
|
||
|
if (actred < 0.)
|
||
|
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
|
||
|
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
|
||
|
temp = Scalar(.1);
|
||
|
/* Computing MIN */
|
||
|
delta = temp * (std::min)(delta, pnorm / Scalar(.1));
|
||
|
par /= temp;
|
||
|
} else if (!(par != 0. && ratio < Scalar(.75))) {
|
||
|
delta = pnorm / Scalar(.5);
|
||
|
par = Scalar(.5) * par;
|
||
|
}
|
||
|
|
||
|
/* test for successful iteration. */
|
||
|
if (ratio >= Scalar(1e-4)) {
|
||
|
/* successful iteration. update x, fvec, and their norms. */
|
||
|
x = wa2;
|
||
|
wa2 = diag.cwiseProduct(x);
|
||
|
fvec = wa4;
|
||
|
xnorm = wa2.stableNorm();
|
||
|
fnorm = fnorm1;
|
||
|
++iter;
|
||
|
}
|
||
|
|
||
|
/* tests for convergence. */
|
||
|
if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
|
||
|
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
|
||
|
if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
|
||
|
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
|
||
|
if (delta <= parameters.xtol * xnorm)
|
||
|
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
|
||
|
|
||
|
/* tests for termination and stringent tolerances. */
|
||
|
if (nfev >= parameters.maxfev)
|
||
|
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
|
||
|
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
|
||
|
return LevenbergMarquardtSpace::FtolTooSmall;
|
||
|
if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
|
||
|
return LevenbergMarquardtSpace::XtolTooSmall;
|
||
|
if (gnorm <= NumTraits<Scalar>::epsilon())
|
||
|
return LevenbergMarquardtSpace::GtolTooSmall;
|
||
|
|
||
|
} while (ratio < Scalar(1e-4));
|
||
|
|
||
|
return LevenbergMarquardtSpace::Running;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
|
||
|
FVectorType &x,
|
||
|
const Scalar tol
|
||
|
)
|
||
|
{
|
||
|
n = x.size();
|
||
|
m = functor.values();
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || m < n || tol < 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
resetParameters();
|
||
|
parameters.ftol = tol;
|
||
|
parameters.xtol = tol;
|
||
|
parameters.maxfev = 100*(n+1);
|
||
|
|
||
|
return minimizeOptimumStorage(x);
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType &x)
|
||
|
{
|
||
|
n = x.size();
|
||
|
m = functor.values();
|
||
|
|
||
|
wa1.resize(n); wa2.resize(n); wa3.resize(n);
|
||
|
wa4.resize(m);
|
||
|
fvec.resize(m);
|
||
|
// Only R is stored in fjac. Q is only used to compute 'qtf', which is
|
||
|
// Q.transpose()*rhs. qtf will be updated using givens rotation,
|
||
|
// instead of storing them in Q.
|
||
|
// The purpose it to only use a nxn matrix, instead of mxn here, so
|
||
|
// that we can handle cases where m>>n :
|
||
|
fjac.resize(n, n);
|
||
|
if (!useExternalScaling)
|
||
|
diag.resize(n);
|
||
|
eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
|
||
|
qtf.resize(n);
|
||
|
|
||
|
/* Function Body */
|
||
|
nfev = 0;
|
||
|
njev = 0;
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
if (useExternalScaling)
|
||
|
for (Index j = 0; j < n; ++j)
|
||
|
if (diag[j] <= 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
/* evaluate the function at the starting point */
|
||
|
/* and calculate its norm. */
|
||
|
nfev = 1;
|
||
|
if ( functor(x, fvec) < 0)
|
||
|
return LevenbergMarquardtSpace::UserAsked;
|
||
|
fnorm = fvec.stableNorm();
|
||
|
|
||
|
/* initialize levenberg-marquardt parameter and iteration counter. */
|
||
|
par = 0.;
|
||
|
iter = 1;
|
||
|
|
||
|
return LevenbergMarquardtSpace::NotStarted;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType &x)
|
||
|
{
|
||
|
using std::abs;
|
||
|
using std::sqrt;
|
||
|
|
||
|
eigen_assert(x.size()==n); // check the caller is not cheating us
|
||
|
|
||
|
Index i, j;
|
||
|
bool sing;
|
||
|
|
||
|
/* compute the qr factorization of the jacobian matrix */
|
||
|
/* calculated one row at a time, while simultaneously */
|
||
|
/* forming (q transpose)*fvec and storing the first */
|
||
|
/* n components in qtf. */
|
||
|
qtf.fill(0.);
|
||
|
fjac.fill(0.);
|
||
|
Index rownb = 2;
|
||
|
for (i = 0; i < m; ++i) {
|
||
|
if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked;
|
||
|
internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
|
||
|
++rownb;
|
||
|
}
|
||
|
++njev;
|
||
|
|
||
|
/* if the jacobian is rank deficient, call qrfac to */
|
||
|
/* reorder its columns and update the components of qtf. */
|
||
|
sing = false;
|
||
|
for (j = 0; j < n; ++j) {
|
||
|
if (fjac(j,j) == 0.)
|
||
|
sing = true;
|
||
|
wa2[j] = fjac.col(j).head(j).stableNorm();
|
||
|
}
|
||
|
permutation.setIdentity(n);
|
||
|
if (sing) {
|
||
|
wa2 = fjac.colwise().blueNorm();
|
||
|
// TODO We have no unit test covering this code path, do not modify
|
||
|
// until it is carefully tested
|
||
|
ColPivHouseholderQR<JacobianType> qrfac(fjac);
|
||
|
fjac = qrfac.matrixQR();
|
||
|
wa1 = fjac.diagonal();
|
||
|
fjac.diagonal() = qrfac.hCoeffs();
|
||
|
permutation = qrfac.colsPermutation();
|
||
|
// TODO : avoid this:
|
||
|
for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors
|
||
|
|
||
|
for (j = 0; j < n; ++j) {
|
||
|
if (fjac(j,j) != 0.) {
|
||
|
sum = 0.;
|
||
|
for (i = j; i < n; ++i)
|
||
|
sum += fjac(i,j) * qtf[i];
|
||
|
temp = -sum / fjac(j,j);
|
||
|
for (i = j; i < n; ++i)
|
||
|
qtf[i] += fjac(i,j) * temp;
|
||
|
}
|
||
|
fjac(j,j) = wa1[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* on the first iteration and if external scaling is not used, scale according */
|
||
|
/* to the norms of the columns of the initial jacobian. */
|
||
|
if (iter == 1) {
|
||
|
if (!useExternalScaling)
|
||
|
for (j = 0; j < n; ++j)
|
||
|
diag[j] = (wa2[j]==0.)? 1. : wa2[j];
|
||
|
|
||
|
/* on the first iteration, calculate the norm of the scaled x */
|
||
|
/* and initialize the step bound delta. */
|
||
|
xnorm = diag.cwiseProduct(x).stableNorm();
|
||
|
delta = parameters.factor * xnorm;
|
||
|
if (delta == 0.)
|
||
|
delta = parameters.factor;
|
||
|
}
|
||
|
|
||
|
/* compute the norm of the scaled gradient. */
|
||
|
gnorm = 0.;
|
||
|
if (fnorm != 0.)
|
||
|
for (j = 0; j < n; ++j)
|
||
|
if (wa2[permutation.indices()[j]] != 0.)
|
||
|
gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
|
||
|
|
||
|
/* test for convergence of the gradient norm. */
|
||
|
if (gnorm <= parameters.gtol)
|
||
|
return LevenbergMarquardtSpace::CosinusTooSmall;
|
||
|
|
||
|
/* rescale if necessary. */
|
||
|
if (!useExternalScaling)
|
||
|
diag = diag.cwiseMax(wa2);
|
||
|
|
||
|
do {
|
||
|
|
||
|
/* determine the levenberg-marquardt parameter. */
|
||
|
internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1);
|
||
|
|
||
|
/* store the direction p and x + p. calculate the norm of p. */
|
||
|
wa1 = -wa1;
|
||
|
wa2 = x + wa1;
|
||
|
pnorm = diag.cwiseProduct(wa1).stableNorm();
|
||
|
|
||
|
/* on the first iteration, adjust the initial step bound. */
|
||
|
if (iter == 1)
|
||
|
delta = (std::min)(delta,pnorm);
|
||
|
|
||
|
/* evaluate the function at x + p and calculate its norm. */
|
||
|
if ( functor(wa2, wa4) < 0)
|
||
|
return LevenbergMarquardtSpace::UserAsked;
|
||
|
++nfev;
|
||
|
fnorm1 = wa4.stableNorm();
|
||
|
|
||
|
/* compute the scaled actual reduction. */
|
||
|
actred = -1.;
|
||
|
if (Scalar(.1) * fnorm1 < fnorm)
|
||
|
actred = 1. - numext::abs2(fnorm1 / fnorm);
|
||
|
|
||
|
/* compute the scaled predicted reduction and */
|
||
|
/* the scaled directional derivative. */
|
||
|
wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1);
|
||
|
temp1 = numext::abs2(wa3.stableNorm() / fnorm);
|
||
|
temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
|
||
|
prered = temp1 + temp2 / Scalar(.5);
|
||
|
dirder = -(temp1 + temp2);
|
||
|
|
||
|
/* compute the ratio of the actual to the predicted */
|
||
|
/* reduction. */
|
||
|
ratio = 0.;
|
||
|
if (prered != 0.)
|
||
|
ratio = actred / prered;
|
||
|
|
||
|
/* update the step bound. */
|
||
|
if (ratio <= Scalar(.25)) {
|
||
|
if (actred >= 0.)
|
||
|
temp = Scalar(.5);
|
||
|
if (actred < 0.)
|
||
|
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
|
||
|
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
|
||
|
temp = Scalar(.1);
|
||
|
/* Computing MIN */
|
||
|
delta = temp * (std::min)(delta, pnorm / Scalar(.1));
|
||
|
par /= temp;
|
||
|
} else if (!(par != 0. && ratio < Scalar(.75))) {
|
||
|
delta = pnorm / Scalar(.5);
|
||
|
par = Scalar(.5) * par;
|
||
|
}
|
||
|
|
||
|
/* test for successful iteration. */
|
||
|
if (ratio >= Scalar(1e-4)) {
|
||
|
/* successful iteration. update x, fvec, and their norms. */
|
||
|
x = wa2;
|
||
|
wa2 = diag.cwiseProduct(x);
|
||
|
fvec = wa4;
|
||
|
xnorm = wa2.stableNorm();
|
||
|
fnorm = fnorm1;
|
||
|
++iter;
|
||
|
}
|
||
|
|
||
|
/* tests for convergence. */
|
||
|
if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
|
||
|
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
|
||
|
if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
|
||
|
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
|
||
|
if (delta <= parameters.xtol * xnorm)
|
||
|
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
|
||
|
|
||
|
/* tests for termination and stringent tolerances. */
|
||
|
if (nfev >= parameters.maxfev)
|
||
|
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
|
||
|
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
|
||
|
return LevenbergMarquardtSpace::FtolTooSmall;
|
||
|
if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
|
||
|
return LevenbergMarquardtSpace::XtolTooSmall;
|
||
|
if (gnorm <= NumTraits<Scalar>::epsilon())
|
||
|
return LevenbergMarquardtSpace::GtolTooSmall;
|
||
|
|
||
|
} while (ratio < Scalar(1e-4));
|
||
|
|
||
|
return LevenbergMarquardtSpace::Running;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType &x)
|
||
|
{
|
||
|
LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
|
||
|
if (status==LevenbergMarquardtSpace::ImproperInputParameters)
|
||
|
return status;
|
||
|
do {
|
||
|
status = minimizeOptimumStorageOneStep(x);
|
||
|
} while (status==LevenbergMarquardtSpace::Running);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
template<typename FunctorType, typename Scalar>
|
||
|
LevenbergMarquardtSpace::Status
|
||
|
LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
|
||
|
FunctorType &functor,
|
||
|
FVectorType &x,
|
||
|
Index *nfev,
|
||
|
const Scalar tol
|
||
|
)
|
||
|
{
|
||
|
Index n = x.size();
|
||
|
Index m = functor.values();
|
||
|
|
||
|
/* check the input parameters for errors. */
|
||
|
if (n <= 0 || m < n || tol < 0.)
|
||
|
return LevenbergMarquardtSpace::ImproperInputParameters;
|
||
|
|
||
|
NumericalDiff<FunctorType> numDiff(functor);
|
||
|
// embedded LevenbergMarquardt
|
||
|
LevenbergMarquardt<NumericalDiff<FunctorType>, Scalar > lm(numDiff);
|
||
|
lm.parameters.ftol = tol;
|
||
|
lm.parameters.xtol = tol;
|
||
|
lm.parameters.maxfev = 200*(n+1);
|
||
|
|
||
|
LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
|
||
|
if (nfev)
|
||
|
* nfev = lm.nfev;
|
||
|
return info;
|
||
|
}
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_LEVENBERGMARQUARDT__H
|
||
|
|
||
|
//vim: ai ts=4 sts=4 et sw=4
|