|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.drive_helpers import get_steer_max
 | 
					
						
							|  |  |  | from common.numpy_fast import clip
 | 
					
						
							|  |  |  | from common.realtime import DT_CTRL
 | 
					
						
							|  |  |  | from cereal import log
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class LatControlLQR():
 | 
					
						
							|  |  |  |   def __init__(self, CP):
 | 
					
						
							|  |  |  |     self.scale = CP.lateralTuning.lqr.scale
 | 
					
						
							|  |  |  |     self.ki = CP.lateralTuning.lqr.ki
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2))
 | 
					
						
							|  |  |  |     self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1))
 | 
					
						
							|  |  |  |     self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2))
 | 
					
						
							|  |  |  |     self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2))
 | 
					
						
							|  |  |  |     self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1))
 | 
					
						
							|  |  |  |     self.dc_gain = CP.lateralTuning.lqr.dcGain
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.x_hat = np.array([[0], [0]])
 | 
					
						
							|  |  |  |     self.i_unwind_rate = 0.3 * DT_CTRL
 | 
					
						
							|  |  |  |     self.i_rate = 1.0 * DT_CTRL
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.sat_count_rate = 1.0 * DT_CTRL
 | 
					
						
							|  |  |  |     self.sat_limit = CP.steerLimitTimer
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.reset()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def reset(self):
 | 
					
						
							|  |  |  |     self.i_lqr = 0.0
 | 
					
						
							|  |  |  |     self.output_steer = 0.0
 | 
					
						
							|  |  |  |     self.sat_count = 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def _check_saturation(self, control, check_saturation, limit):
 | 
					
						
							|  |  |  |     saturated = abs(control) == limit
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if saturated and check_saturation:
 | 
					
						
							|  |  |  |       self.sat_count += self.sat_count_rate
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       self.sat_count -= self.sat_count_rate
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.sat_count = clip(self.sat_count, 0.0, 1.0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return self.sat_count > self.sat_limit
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, active, CS, CP, path_plan):
 | 
					
						
							|  |  |  |     lqr_log = log.ControlsState.LateralLQRState.new_message()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     steers_max = get_steer_max(CP, CS.vEgo)
 | 
					
						
							|  |  |  |     torque_scale = (0.45 + CS.vEgo / 60.0)**2  # Scale actuator model with speed
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     steering_angle = CS.steeringAngle
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Subtract offset. Zero angle should correspond to zero torque
 | 
					
						
							|  |  |  |     self.angle_steers_des = path_plan.angleSteers - path_plan.angleOffset
 | 
					
						
							|  |  |  |     steering_angle -= path_plan.angleOffset
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Update Kalman filter
 | 
					
						
							|  |  |  |     angle_steers_k = float(self.C.dot(self.x_hat))
 | 
					
						
							|  |  |  |     e = steering_angle - angle_steers_k
 | 
					
						
							|  |  |  |     self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if CS.vEgo < 0.3 or not active:
 | 
					
						
							|  |  |  |       lqr_log.active = False
 | 
					
						
							|  |  |  |       lqr_output = 0.
 | 
					
						
							|  |  |  |       self.reset()
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       lqr_log.active = True
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # LQR
 | 
					
						
							|  |  |  |       u_lqr = float(self.angle_steers_des / self.dc_gain - self.K.dot(self.x_hat))
 | 
					
						
							|  |  |  |       lqr_output = torque_scale * u_lqr / self.scale
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # Integrator
 | 
					
						
							|  |  |  |       if CS.steeringPressed:
 | 
					
						
							|  |  |  |         self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr))
 | 
					
						
							|  |  |  |       else:
 | 
					
						
							|  |  |  |         error = self.angle_steers_des - angle_steers_k
 | 
					
						
							|  |  |  |         i = self.i_lqr + self.ki * self.i_rate * error
 | 
					
						
							|  |  |  |         control = lqr_output + i
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (error >= 0 and (control <= steers_max or i < 0.0)) or \
 | 
					
						
							|  |  |  |            (error <= 0 and (control >= -steers_max or i > 0.0)):
 | 
					
						
							|  |  |  |           self.i_lqr = i
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       self.output_steer = lqr_output + self.i_lqr
 | 
					
						
							|  |  |  |       self.output_steer = clip(self.output_steer, -steers_max, steers_max)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     check_saturation = (CS.vEgo > 10) and not CS.steeringRateLimited and not CS.steeringPressed
 | 
					
						
							|  |  |  |     saturated = self._check_saturation(self.output_steer, check_saturation, steers_max)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     lqr_log.steerAngle = angle_steers_k + path_plan.angleOffset
 | 
					
						
							|  |  |  |     lqr_log.i = self.i_lqr
 | 
					
						
							|  |  |  |     lqr_log.output = self.output_steer
 | 
					
						
							|  |  |  |     lqr_log.lqrOutput = lqr_output
 | 
					
						
							|  |  |  |     lqr_log.saturated = saturated
 | 
					
						
							|  |  |  |     return self.output_steer, float(self.angle_steers_des), lqr_log
 |