| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#!/usr/bin/env python3
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import os
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import time
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import pickle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import numpy as np
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import cereal.messaging as messaging
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from cereal import car, log
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from pathlib import Path
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from setproctitle import setproctitle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from cereal.messaging import PubMaster, SubMaster
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from opendbc.car.car_helpers import get_demo_car_params
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.common.swaglog import cloudlog
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from openpilot.common.params import Params
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from openpilot.common.filter_simple import FirstOrderFilter
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from openpilot.common.realtime import config_realtime_process
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.common.transformations.camera import DEVICE_CAMERAS
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.common.transformations.model import get_warp_matrix
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.system import sentry
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												selfdrive/car: ban cereal and capnp (#33208)
* ban cereal and msgq
* common too
* do toyota/values.py
* do all fingerprints
* example without builder
* this still works, but no type checking anymore
* stash
* wtf, how does this work
* okay actually not bad
* safe
* epic!
* stash data_structures.py
* some clean up
* hell yeah
* clean up old file
* add to delete
* delete
This reverts commit 90239b7797ace31ee647a2fdbd67e0c3faa98dcf.
* switch more CarParams stuff over
remove unused
* fix car tests by removing cereal! mypy forgets about dataclass if we wrap it :(
* fix this too
* fix this too
* remove more cereal and add some good hyundai tests
* bunch more typing
* override default with 20hz radar
* temp capnp converter helper
* more lateralTuning
* small union replicator is better than what i was trying, and fixes mypy dynamic typing issues
* can keep all this the same now!
* type ret: CarParams, add more missing structs, revert lateralTuning changes (smaller diff!)
* revert more
* get first enum automatically, but ofc mypy doesn't pick up the new metaclass so can't use :(
would have been `CarParams.NetworkLocation()`
* Revert "get first enum automatically, but ofc mypy doesn't pick up the new metaclass so can't use :("
This reverts commit bb28b228becba932052d2fc5a4389784027435b1.
* remove cereal from car_helpers (TODO: caching)
* remove a bunch of temp lines
* use dataclass_transform!
* remove some car.CarParams from the interfaces
* remove rest of car.CarParams from the interfaces
* same which() API
* sort
* from cereal/cache from fingerprinting!
* more typing
* dataclass to capnp helper for CarParams, cached it since it's kinda slow
* (partial) fix process replay fingerprintig for new API
* latcontrollers take capnp
* forgot this
* fix test_models
* fix unit tests
* not here
* VehicleModel and controller still takes capnp CP since they get it from Params()
* fix modeld test
* more fix
* need to namespace to structs, since CarState is both class and struct
* this was never in the base class?!
* clean that up again
* fix import error
fix import error
* cmts and more structs
* remove some more cereal from toyota + convert CarState to capnp
* bruh this was wrong
* replace more cereal
* EventName is one of the last things...
* replace a bunch more cereal.car
* missing imports
* more
* can fix this typing now
* proper toyota+others CS typing!
* mypy can detect return type of CS.update() now
* fix redeclaration of cruise_buttons type
* mypy is only complaining about events now
* temp fix
* add carControl struct
* replace CarControl
i hope there's no circular imports in hyundai's CC
* fine now
* lol this was wrong too
* fix crash
* include my failed attempts at recursively converting to dataclass (doesn't implicitly convert types/recursively :( )
but attrs does, maybe will switch in the future
* clean up
* try out attr.s for its converter (doesn't work recursively yet, but interesting!)
* Revert "try out attr.s for its converter (doesn't work recursively yet, but interesting!)"
This reverts commit ff2434f7bbd45a4d4bfb21f7d6712d1f1c3bcde9.
* test processes doesn't fail anymore (on toyota)!
* fix honda crash
* stash
* Revert "stash"
This reverts commit c1762af4e776790e4ad1322ad4ce0610157346e0.
* remove a bunch more cereal!
* LET'S GOOO
* fix these tests
* and these
* and that
* stash, something is wrong with hyundai enable
* Revert "stash, something is wrong with hyundai enable"
This reverts commit 39cf327def258e2959fe23cd7a550a858f6d8f03.
* forgot these
* remove cereal from fw_versions
* Revert "remove cereal from fw_versions"
This reverts commit 232b37cd409b55d04b1afc90d4a80c49e710eb56.
* remove rest of the cereal exceptions!
* fix that
* add typing to radard since I didn't realize RI.update() switched from cereal to structs
* and here too!
* add TODO for slots
* needed CS to be capnp, fix comparisons, and type hint car_specific so it's easier to catch type issues (capnp isn't detected by mypy :( )
* remove the struct converter
* save ~4-5% CPU at 100hz, we don't modify after so no need to deepcopy
btw pickle.loads(pickle.dumps()) is faster by ~1% CPU
* deepcopy -> copy: we can technically make a reference, but copy is almost free and less error-prone
saves ~1% CPU
* add non-copying asdict function
* should save ~3% CPU (still 4% above baseline)
* fix that, no dict support
* ~27% decrease in time for 20k iterations on 3X (3.37857 -> 2.4821s)
* give a better name
* fix
* dont support none, capitalize
* sheesh, this called type() on every field
* remove CS.events, clean up
* bump card %
* this was a bug on master!
* add a which enum
* default to pid
* revert
* update refs
* not needed, but consistent
* just Ecu
* don't need to do this in this pr
* clean up
* no cast
* consistent typing
* rm
* fix
* can do this if we're desperate for the last few %
* Revert "can do this if we're desperate for the last few %"
This reverts commit 18e11ac7883a0a56583750b1cc5a2b13011e7299.
* type this
* don't need to convert carControl
* i guess don't support set either
* fix CP type hint
* simplify that
											
										 
										
											1 year ago
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.car.card import convert_to_capnp
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.modeld.parse_model_outputs import Parser
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.modeld.constants import ModelConstants
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								PROCESS_NAME = "selfdrive.modeld.modeld"
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								MODEL_PATHS = {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class FrameMeta:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  frame_id: int = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  timestamp_sof: int = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  timestamp_eof: int = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def __init__(self, vipc=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if vipc is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class ModelState:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  frame: ModelFrame
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  wide_frame: ModelFrame
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  inputs: dict[str, np.ndarray]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  output: np.ndarray
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  prev_desire: np.ndarray  # for tracking the rising edge of the pulse
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  model: ModelRunner
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def __init__(self, context: CLContext):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.frame = ModelFrame(context)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.wide_frame = ModelFrame(context)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.inputs = {
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    with open(METADATA_PATH, 'rb') as f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      model_metadata = pickle.load(f)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.output_slices = model_metadata['output_slices']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    net_output_size = model_metadata['output_shapes']['outputs'][1]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.output = np.zeros(net_output_size, dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.parser = Parser()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.model.addInput("input_imgs", None)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.model.addInput("big_input_imgs", None)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for k,v in self.inputs.items():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      self.model.addInput(k, v)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  def slice_outputs(self, model_outputs: np.ndarray) -> dict[str, np.ndarray]:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if SEND_RAW_PRED:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      parsed_model_outputs['raw_pred'] = model_outputs.copy()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return parsed_model_outputs
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                inputs: dict[str, np.ndarray], prepare_only: bool) -> dict[str, np.ndarray] | None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Model decides when action is completed, so desire input is just a pulse triggered on rising edge
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    inputs['desire'][0] = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.prev_desire[:] = inputs['desire']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.inputs['traffic_convention'][:] = inputs['traffic_convention']
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # if getCLBuffer is not None, frame will be None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if wbuf is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if prepare_only:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      return None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.model.execute()
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    outputs = self.parser.parse_outputs(self.slice_outputs(self.output))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.inputs['prev_desired_curv'][:-ModelConstants.PREV_DESIRED_CURV_LEN] = self.inputs['prev_desired_curv'][ModelConstants.PREV_DESIRED_CURV_LEN:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = outputs['desired_curvature'][0, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    return outputs
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def main(demo=False):
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  cloudlog.warning("modeld init")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  sentry.set_tag("daemon", PROCESS_NAME)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  cloudlog.bind(daemon=PROCESS_NAME)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  setproctitle(PROCESS_NAME)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  config_realtime_process(7, 54)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  cloudlog.warning("setting up CL context")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  cl_context = CLContext()
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  cloudlog.warning("CL context ready; loading model")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  model = ModelState(cl_context)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  cloudlog.warning("models loaded, modeld starting")
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # visionipc clients
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  while True:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    available_streams = VisionIpcClient.available_streams("camerad", block=False)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if available_streams:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    time.sleep(.1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  while not vipc_client_main.connect(False):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    time.sleep(0.1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  while use_extra_client and not vipc_client_extra.connect(False):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    time.sleep(0.1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  if use_extra_client:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # messaging
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  pm = PubMaster(["modelV2", "drivingModelData", "cameraOdometry"])
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "carControl"])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  publish_state = PublishState()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  params = Params()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # setup filter to track dropped frames
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  frame_id = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  last_vipc_frame_id = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  run_count = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  model_transform_main = np.zeros((3, 3), dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  model_transform_extra = np.zeros((3, 3), dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  live_calib_seen = False
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  buf_main, buf_extra = None, None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  meta_main = FrameMeta()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  meta_extra = FrameMeta()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  if demo:
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												selfdrive/car: ban cereal and capnp (#33208)
* ban cereal and msgq
* common too
* do toyota/values.py
* do all fingerprints
* example without builder
* this still works, but no type checking anymore
* stash
* wtf, how does this work
* okay actually not bad
* safe
* epic!
* stash data_structures.py
* some clean up
* hell yeah
* clean up old file
* add to delete
* delete
This reverts commit 90239b7797ace31ee647a2fdbd67e0c3faa98dcf.
* switch more CarParams stuff over
remove unused
* fix car tests by removing cereal! mypy forgets about dataclass if we wrap it :(
* fix this too
* fix this too
* remove more cereal and add some good hyundai tests
* bunch more typing
* override default with 20hz radar
* temp capnp converter helper
* more lateralTuning
* small union replicator is better than what i was trying, and fixes mypy dynamic typing issues
* can keep all this the same now!
* type ret: CarParams, add more missing structs, revert lateralTuning changes (smaller diff!)
* revert more
* get first enum automatically, but ofc mypy doesn't pick up the new metaclass so can't use :(
would have been `CarParams.NetworkLocation()`
* Revert "get first enum automatically, but ofc mypy doesn't pick up the new metaclass so can't use :("
This reverts commit bb28b228becba932052d2fc5a4389784027435b1.
* remove cereal from car_helpers (TODO: caching)
* remove a bunch of temp lines
* use dataclass_transform!
* remove some car.CarParams from the interfaces
* remove rest of car.CarParams from the interfaces
* same which() API
* sort
* from cereal/cache from fingerprinting!
* more typing
* dataclass to capnp helper for CarParams, cached it since it's kinda slow
* (partial) fix process replay fingerprintig for new API
* latcontrollers take capnp
* forgot this
* fix test_models
* fix unit tests
* not here
* VehicleModel and controller still takes capnp CP since they get it from Params()
* fix modeld test
* more fix
* need to namespace to structs, since CarState is both class and struct
* this was never in the base class?!
* clean that up again
* fix import error
fix import error
* cmts and more structs
* remove some more cereal from toyota + convert CarState to capnp
* bruh this was wrong
* replace more cereal
* EventName is one of the last things...
* replace a bunch more cereal.car
* missing imports
* more
* can fix this typing now
* proper toyota+others CS typing!
* mypy can detect return type of CS.update() now
* fix redeclaration of cruise_buttons type
* mypy is only complaining about events now
* temp fix
* add carControl struct
* replace CarControl
i hope there's no circular imports in hyundai's CC
* fine now
* lol this was wrong too
* fix crash
* include my failed attempts at recursively converting to dataclass (doesn't implicitly convert types/recursively :( )
but attrs does, maybe will switch in the future
* clean up
* try out attr.s for its converter (doesn't work recursively yet, but interesting!)
* Revert "try out attr.s for its converter (doesn't work recursively yet, but interesting!)"
This reverts commit ff2434f7bbd45a4d4bfb21f7d6712d1f1c3bcde9.
* test processes doesn't fail anymore (on toyota)!
* fix honda crash
* stash
* Revert "stash"
This reverts commit c1762af4e776790e4ad1322ad4ce0610157346e0.
* remove a bunch more cereal!
* LET'S GOOO
* fix these tests
* and these
* and that
* stash, something is wrong with hyundai enable
* Revert "stash, something is wrong with hyundai enable"
This reverts commit 39cf327def258e2959fe23cd7a550a858f6d8f03.
* forgot these
* remove cereal from fw_versions
* Revert "remove cereal from fw_versions"
This reverts commit 232b37cd409b55d04b1afc90d4a80c49e710eb56.
* remove rest of the cereal exceptions!
* fix that
* add typing to radard since I didn't realize RI.update() switched from cereal to structs
* and here too!
* add TODO for slots
* needed CS to be capnp, fix comparisons, and type hint car_specific so it's easier to catch type issues (capnp isn't detected by mypy :( )
* remove the struct converter
* save ~4-5% CPU at 100hz, we don't modify after so no need to deepcopy
btw pickle.loads(pickle.dumps()) is faster by ~1% CPU
* deepcopy -> copy: we can technically make a reference, but copy is almost free and less error-prone
saves ~1% CPU
* add non-copying asdict function
* should save ~3% CPU (still 4% above baseline)
* fix that, no dict support
* ~27% decrease in time for 20k iterations on 3X (3.37857 -> 2.4821s)
* give a better name
* fix
* dont support none, capitalize
* sheesh, this called type() on every field
* remove CS.events, clean up
* bump card %
* this was a bug on master!
* add a which enum
* default to pid
* revert
* update refs
* not needed, but consistent
* just Ecu
* don't need to do this in this pr
* clean up
* no cast
* consistent typing
* rm
* fix
* can do this if we're desperate for the last few %
* Revert "can do this if we're desperate for the last few %"
This reverts commit 18e11ac7883a0a56583750b1cc5a2b13011e7299.
* type this
* don't need to convert carControl
* i guess don't support set either
* fix CP type hint
* simplify that
											
										 
										
											1 year ago
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    CP = convert_to_capnp(get_demo_car_params())
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  else:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  cloudlog.info("modeld got CarParams: %s", CP.carName)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  # TODO this needs more thought, use .2s extra for now to estimate other delays
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  steer_delay = CP.steerActuatorDelay + .2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  DH = DesireHelper()
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  while True:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # Keep receiving frames until we are at least 1 frame ahead of previous extra frame
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      buf_main = vipc_client_main.recv()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      meta_main = FrameMeta(vipc_client_main)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      if buf_main is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if buf_main is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      cloudlog.debug("vipc_client_main no frame")
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if use_extra_client:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      # Keep receiving extra frames until frame id matches main camera
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      while True:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        buf_extra = vipc_client_extra.recv()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        meta_extra = FrameMeta(vipc_client_extra)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								          break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      if buf_extra is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        cloudlog.debug("vipc_client_extra no frame")
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        cloudlog.error(f"frames out of sync! main: {meta_main.frame_id} ({meta_main.timestamp_sof / 1e9:.5f}),\
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                         extra: {meta_extra.frame_id} ({meta_extra.timestamp_sof / 1e9:.5f})")
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      # Use single camera
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      buf_extra = buf_main
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      meta_extra = meta_main
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sm.update(0)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    desire = DH.desire
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    is_rhd = sm["driverMonitoringState"].isRHD
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    frame_id = sm["roadCameraState"].frameId
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    lateral_control_params = np.array([sm["carState"].vEgo, steer_delay], dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      model_transform_main = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics if main_wide_camera else dc.fcam.intrinsics, False).astype(np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      model_transform_extra = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics, True).astype(np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      live_calib_seen = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    traffic_convention = np.zeros(2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    traffic_convention[int(is_rhd)] = 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if desire >= 0 and desire < ModelConstants.DESIRE_LEN:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      vec_desire[desire] = 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # tracked dropped frames
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if run_count < 10: # let frame drops warm up
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      frame_dropped_filter.x = 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      frames_dropped = 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    run_count = run_count + 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    frame_drop_ratio = frames_dropped / (1 + frames_dropped)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    prepare_only = vipc_dropped_frames > 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if prepare_only:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    inputs:dict[str, np.ndarray] = {
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      'desire': vec_desire,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      'traffic_convention': traffic_convention,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      'lateral_control_params': lateral_control_params,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    mt1 = time.perf_counter()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    mt2 = time.perf_counter()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model_execution_time = mt2 - mt1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if model_output is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      modelv2_send = messaging.new_message('modelV2')
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      drivingdata_send = messaging.new_message('drivingModelData')
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      posenet_send = messaging.new_message('cameraOdometry')
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      fill_model_msg(drivingdata_send, modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                     frame_drop_ratio, meta_main.timestamp_eof, model_execution_time, live_calib_seen)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      desire_state = modelv2_send.modelV2.meta.desireState
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      l_lane_change_prob = desire_state[log.Desire.laneChangeLeft]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r_lane_change_prob = desire_state[log.Desire.laneChangeRight]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      lane_change_prob = l_lane_change_prob + r_lane_change_prob
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      modelv2_send.modelV2.meta.laneChangeState = DH.lane_change_state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      modelv2_send.modelV2.meta.laneChangeDirection = DH.lane_change_direction
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      drivingdata_send.drivingModelData.meta.laneChangeState = DH.lane_change_state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      drivingdata_send.drivingModelData.meta.laneChangeDirection = DH.lane_change_direction
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      pm.send('modelV2', modelv2_send)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      pm.send('drivingModelData', drivingdata_send)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      pm.send('cameraOdometry', posenet_send)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    last_vipc_frame_id = meta_main.frame_id
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == "__main__":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  try:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    import argparse
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser = argparse.ArgumentParser()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    args = parser.parse_args()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    main(demo=args.demo)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  except KeyboardInterrupt:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    cloudlog.warning(f"child {PROCESS_NAME} got SIGINT")
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  except Exception:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sentry.capture_exception()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    raise
							 |