You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					31 lines
				
				1.1 KiB
			
		
		
			
		
	
	
					31 lines
				
				1.1 KiB
			| 
								 
											5 years ago
										 
									 | 
							
								#!/usr/bin/env python3
							 | 
						||
| 
								 | 
							
								import os
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from tools.lib.logreader import LogReader
							 | 
						||
| 
								 | 
							
								from tools.lib.framereader import FrameReader
							 | 
						||
| 
								 | 
							
								from tools.lib.cache import cache_path_for_file_path
							 | 
						||
| 
								 | 
							
								from selfdrive.test.process_replay.camera_replay import camera_replay
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								if __name__ == "__main__":
							 | 
						||
| 
								 | 
							
								  lr = LogReader(os.path.expanduser('~/rlog.bz2'))
							 | 
						||
| 
								 | 
							
								  fr = FrameReader(os.path.expanduser('~/fcamera.hevc'))
							 | 
						||
| 
								 | 
							
								  desire = np.load(os.path.expanduser('~/desire.npy'))
							 | 
						||
| 
								 | 
							
								  calib = np.load(os.path.expanduser('~/calib.npy'))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  try:
							 | 
						||
| 
								 | 
							
								    msgs = camera_replay(list(lr), fr, desire=desire, calib=calib)
							 | 
						||
| 
								 | 
							
								  finally:
							 | 
						||
| 
								 | 
							
								    cache_path = cache_path_for_file_path(os.path.expanduser('~/fcamera.hevc'))
							 | 
						||
| 
								 | 
							
								    if os.path.isfile(cache_path):
							 | 
						||
| 
								 | 
							
								      os.remove(cache_path)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  output_size = len(np.frombuffer(msgs[0].model.rawPred, dtype=np.float32))
							 | 
						||
| 
								 | 
							
								  output_data = np.zeros((len(msgs), output_size), dtype=np.float32)
							 | 
						||
| 
								 | 
							
								  for i, msg in enumerate(msgs):
							 | 
						||
| 
								 | 
							
								    output_data[i] = np.frombuffer(msg.model.rawPred, dtype=np.float32)
							 | 
						||
| 
								 | 
							
								  np.save(os.path.expanduser('~/modeldata.npy'), output_data)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  print("Finished replay")
							 |