You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					288 lines
				
				9.8 KiB
			
		
		
			
		
	
	
					288 lines
				
				9.8 KiB
			| 
											6 years ago
										 | #include <string.h>
 | ||
|  | #include <assert.h>
 | ||
|  | #include <fcntl.h>
 | ||
|  | #include <unistd.h>
 | ||
|  | #include "common/timing.h"
 | ||
|  | #include "driving.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define PATH_IDX 0
 | ||
|  | #define LL_IDX PATH_IDX + MODEL_PATH_DISTANCE*2
 | ||
|  | #define RL_IDX LL_IDX + MODEL_PATH_DISTANCE*2 + 1
 | ||
|  | #define LEAD_IDX RL_IDX + MODEL_PATH_DISTANCE*2 + 1
 | ||
|  | #define LONG_X_IDX LEAD_IDX + MDN_GROUP_SIZE*LEAD_MDN_N + SELECTION 
 | ||
|  | #define LONG_V_IDX LONG_X_IDX + TIME_DISTANCE*2
 | ||
|  | #define LONG_A_IDX LONG_V_IDX + TIME_DISTANCE*2
 | ||
|  | #define META_IDX LONG_A_IDX + TIME_DISTANCE*2
 | ||
|  | #define POSE_IDX META_IDX + OTHER_META_SIZE + DESIRE_PRED_SIZE
 | ||
|  | #define OUTPUT_SIZE  POSE_IDX + POSE_SIZE
 | ||
|  | #ifdef TEMPORAL
 | ||
|  |   #define TEMPORAL_SIZE 512
 | ||
|  | #else
 | ||
|  |   #define TEMPORAL_SIZE 0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // #define DUMP_YUV
 | ||
|  | 
 | ||
|  | Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE - 1> vander;
 | ||
|  | 
 | ||
|  | void model_init(ModelState* s, cl_device_id device_id, cl_context context, int temporal) {
 | ||
|  |   frame_init(&s->frame, MODEL_WIDTH, MODEL_HEIGHT, device_id, context);
 | ||
|  |   s->input_frames = (float*)calloc(MODEL_FRAME_SIZE * 2, sizeof(float));
 | ||
|  |   
 | ||
|  |   const int output_size = OUTPUT_SIZE + TEMPORAL_SIZE;
 | ||
|  |   s->output = (float*)calloc(output_size, sizeof(float));
 | ||
|  |   
 | ||
|  |   s->m = new DefaultRunModel("../../models/supercombo.dlc", s->output, output_size, USE_GPU_RUNTIME);
 | ||
|  | 
 | ||
|  | #ifdef TEMPORAL
 | ||
|  |   assert(temporal);
 | ||
|  |   s->m->addRecurrent(&s->output[OUTPUT_SIZE], TEMPORAL_SIZE);
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef DESIRE
 | ||
|  |   s->desire = (float*)malloc(DESIRE_SIZE * sizeof(float));
 | ||
|  |   for (int i = 0; i < DESIRE_SIZE; i++) s->desire[i] = 0.0;
 | ||
|  |   s->m->addDesire(s->desire, DESIRE_SIZE);
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   // Build Vandermonde matrix
 | ||
|  |   for(int i = 0; i < MODEL_PATH_DISTANCE; i++) {
 | ||
|  |     for(int j = 0; j < POLYFIT_DEGREE - 1; j++) {
 | ||
|  |       vander(i, j) = pow(i, POLYFIT_DEGREE-j-1);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | ModelDataRaw model_eval_frame(ModelState* s, cl_command_queue q,
 | ||
|  |                            cl_mem yuv_cl, int width, int height,
 | ||
|  |                            mat3 transform, void* sock, float *desire_in) {
 | ||
|  | #ifdef DESIRE
 | ||
|  |   if (desire_in != NULL) {
 | ||
|  |     for (int i = 0; i < DESIRE_SIZE; i++) s->desire[i] = desire_in[i];
 | ||
|  |   }
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   //for (int i = 0; i < OUTPUT_SIZE + TEMPORAL_SIZE; i++) { printf("%f ", s->output[i]); } printf("\n");
 | ||
|  | 
 | ||
|  |   float *new_frame_buf = frame_prepare(&s->frame, q, yuv_cl, width, height, transform);
 | ||
|  |   memmove(&s->input_frames[0], &s->input_frames[MODEL_FRAME_SIZE], sizeof(float)*MODEL_FRAME_SIZE);
 | ||
|  |   memmove(&s->input_frames[MODEL_FRAME_SIZE], new_frame_buf, sizeof(float)*MODEL_FRAME_SIZE);
 | ||
|  |   s->m->execute(s->input_frames);
 | ||
|  | 
 | ||
|  |   #ifdef DUMP_YUV
 | ||
|  |     FILE *dump_yuv_file = fopen("/sdcard/dump.yuv", "wb");
 | ||
|  |     fwrite(new_frame_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file);
 | ||
|  |     fclose(dump_yuv_file);
 | ||
|  |     assert(1==2);
 | ||
|  |   #endif
 | ||
|  | 
 | ||
|  |   // net outputs
 | ||
|  |   ModelDataRaw net_outputs;
 | ||
|  |   net_outputs.path = &s->output[PATH_IDX];
 | ||
|  |   net_outputs.left_lane = &s->output[LL_IDX];
 | ||
|  |   net_outputs.right_lane = &s->output[RL_IDX];
 | ||
|  |   net_outputs.lead = &s->output[LEAD_IDX];
 | ||
|  |   net_outputs.long_x = &s->output[LONG_X_IDX];
 | ||
|  |   net_outputs.long_v = &s->output[LONG_V_IDX];
 | ||
|  |   net_outputs.long_a = &s->output[LONG_A_IDX];
 | ||
|  |   net_outputs.meta = &s->output[META_IDX];
 | ||
|  |   net_outputs.pose = &s->output[POSE_IDX];
 | ||
|  |   return net_outputs;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | void model_free(ModelState* s) {
 | ||
|  |   free(s->output);
 | ||
|  |   free(s->input_frames);
 | ||
|  |   frame_free(&s->frame);
 | ||
|  |   delete s->m;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | void poly_fit(float *in_pts, float *in_stds, float *out) {
 | ||
|  |   // References to inputs
 | ||
|  |   Eigen::Map<Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> > pts(in_pts, MODEL_PATH_DISTANCE);
 | ||
|  |   Eigen::Map<Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> > std(in_stds, MODEL_PATH_DISTANCE);
 | ||
|  |   Eigen::Map<Eigen::Matrix<float, POLYFIT_DEGREE - 1, 1> > p(out, POLYFIT_DEGREE - 1);
 | ||
|  | 
 | ||
|  |   float y0 = pts[0];
 | ||
|  |   pts = pts.array() - y0;
 | ||
|  | 
 | ||
|  |   // Build Least Squares equations
 | ||
|  |   Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE - 1> lhs = vander.array().colwise() / std.array();
 | ||
|  |   Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> rhs = pts.array() / std.array();
 | ||
|  | 
 | ||
|  |   // Improve numerical stability
 | ||
|  |   Eigen::Matrix<float, POLYFIT_DEGREE - 1, 1> scale = 1. / (lhs.array()*lhs.array()).sqrt().colwise().sum();
 | ||
|  |   lhs = lhs * scale.asDiagonal();
 | ||
|  | 
 | ||
|  |   // Solve inplace
 | ||
|  |   Eigen::ColPivHouseholderQR<Eigen::Ref<Eigen::MatrixXf> > qr(lhs);
 | ||
|  |   p = qr.solve(rhs);
 | ||
|  | 
 | ||
|  |   // Apply scale to output
 | ||
|  |   p = p.transpose() * scale.asDiagonal();
 | ||
|  |   out[3] = y0;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void fill_path(cereal::ModelData::PathData::Builder path, const float * data, bool has_prob, const float offset) {
 | ||
|  |   float points_arr[MODEL_PATH_DISTANCE];
 | ||
|  |   float stds_arr[MODEL_PATH_DISTANCE];
 | ||
|  |   float poly_arr[POLYFIT_DEGREE];
 | ||
|  |   float std;
 | ||
|  |   float prob;
 | ||
|  | 
 | ||
|  |   for (int i=0; i<MODEL_PATH_DISTANCE; i++) {
 | ||
|  |     points_arr[i] = data[i] + offset;
 | ||
|  |     stds_arr[i] = softplus(data[MODEL_PATH_DISTANCE + i]);
 | ||
|  |   }
 | ||
|  |   if (has_prob) {
 | ||
|  |     prob =  sigmoid(data[MODEL_PATH_DISTANCE*2]);
 | ||
|  |   } else {
 | ||
|  |     prob = 1.0;
 | ||
|  |   }
 | ||
|  |   std = softplus(data[MODEL_PATH_DISTANCE]);
 | ||
|  |   poly_fit(points_arr, stds_arr, poly_arr);
 | ||
|  | 
 | ||
|  |   if (std::getenv("DEBUG")){
 | ||
|  |     kj::ArrayPtr<const float> stds(&stds_arr[0], ARRAYSIZE(stds_arr));
 | ||
|  |     path.setStds(stds);
 | ||
|  | 
 | ||
|  |     kj::ArrayPtr<const float> points(&points_arr[0], ARRAYSIZE(points_arr));
 | ||
|  |     path.setPoints(points);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   kj::ArrayPtr<const float> poly(&poly_arr[0], ARRAYSIZE(poly_arr));
 | ||
|  |   path.setPoly(poly);
 | ||
|  |   path.setProb(prob);
 | ||
|  |   path.setStd(std);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | void fill_lead(cereal::ModelData::LeadData::Builder lead, const float * data, int mdn_max_idx) {
 | ||
|  |   const double x_scale = 10.0;
 | ||
|  |   const double y_scale = 10.0;
 | ||
|  |  
 | ||
|  |   lead.setProb(sigmoid(data[LEAD_MDN_N*MDN_GROUP_SIZE]));
 | ||
|  |   lead.setDist(x_scale * data[mdn_max_idx*MDN_GROUP_SIZE]);
 | ||
|  |   lead.setStd(x_scale * softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS]));
 | ||
|  |   lead.setRelY(y_scale * data[mdn_max_idx*MDN_GROUP_SIZE + 1]);
 | ||
|  |   lead.setRelYStd(y_scale * softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 1]));
 | ||
|  |   lead.setRelVel(data[mdn_max_idx*MDN_GROUP_SIZE + 2]);
 | ||
|  |   lead.setRelVelStd(softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 2]));
 | ||
|  |   lead.setRelA(data[mdn_max_idx*MDN_GROUP_SIZE + 3]);
 | ||
|  |   lead.setRelAStd(softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 3]));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | void fill_meta(cereal::ModelData::MetaData::Builder meta, const float * meta_data) {
 | ||
|  |   meta.setEngagedProb(meta_data[0]);
 | ||
|  |   meta.setGasDisengageProb(meta_data[1]);
 | ||
|  |   meta.setBrakeDisengageProb(meta_data[2]);
 | ||
|  |   meta.setSteerOverrideProb(meta_data[3]);
 | ||
|  |   kj::ArrayPtr<const float> desire_pred(&meta_data[OTHER_META_SIZE], DESIRE_PRED_SIZE);
 | ||
|  |   meta.setDesirePrediction(desire_pred);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | void fill_longi(cereal::ModelData::LongitudinalData::Builder longi, const float * long_v_data, const float * long_a_data) {
 | ||
|  |   // just doing 10 vals, 1 every sec for now
 | ||
|  |   float speed_arr[TIME_DISTANCE/10];
 | ||
|  |   float accel_arr[TIME_DISTANCE/10];
 | ||
|  |   for (int i=0; i<TIME_DISTANCE/10; i++) {
 | ||
|  |     speed_arr[i] = long_v_data[i*10];
 | ||
|  |     accel_arr[i] = long_a_data[i*10];
 | ||
|  |   }
 | ||
|  |   kj::ArrayPtr<const float> speed(&speed_arr[0], ARRAYSIZE(speed_arr));
 | ||
|  |   longi.setSpeeds(speed);
 | ||
|  |   kj::ArrayPtr<const float> accel(&accel_arr[0], ARRAYSIZE(accel_arr));
 | ||
|  |   longi.setAccelerations(accel);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | void model_publish(PubSocket *sock, uint32_t frame_id,
 | ||
|  |                    const ModelDataRaw net_outputs, uint64_t timestamp_eof) {
 | ||
|  |     // make msg
 | ||
|  |     capnp::MallocMessageBuilder msg;
 | ||
|  |     cereal::Event::Builder event = msg.initRoot<cereal::Event>();
 | ||
|  |     event.setLogMonoTime(nanos_since_boot());
 | ||
|  |   
 | ||
|  |     auto framed = event.initModel();
 | ||
|  |     framed.setFrameId(frame_id);
 | ||
|  |     framed.setTimestampEof(timestamp_eof);
 | ||
|  | 
 | ||
|  |     auto lpath = framed.initPath();
 | ||
|  |     fill_path(lpath, net_outputs.path, false, 0);
 | ||
|  |     auto left_lane = framed.initLeftLane();
 | ||
|  |     fill_path(left_lane, net_outputs.left_lane, true, 1.8);
 | ||
|  |     auto right_lane = framed.initRightLane();
 | ||
|  |     fill_path(right_lane, net_outputs.right_lane, true, -1.8);
 | ||
|  |     auto longi = framed.initLongitudinal();
 | ||
|  |     fill_longi(longi, net_outputs.long_v, net_outputs.long_a);
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     // Find the distribution that corresponds to the current lead
 | ||
|  |     int mdn_max_idx = 0;
 | ||
|  |     for (int i=1; i<LEAD_MDN_N; i++) {
 | ||
|  |       if (net_outputs.lead[i*MDN_GROUP_SIZE + 8] > net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 8]) {
 | ||
|  |         mdn_max_idx = i;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     auto lead = framed.initLead();
 | ||
|  |     fill_lead(lead, net_outputs.lead, mdn_max_idx);
 | ||
|  |     // Find the distribution that corresponds to the lead in 2s
 | ||
|  |     mdn_max_idx = 0;
 | ||
|  |     for (int i=1; i<LEAD_MDN_N; i++) {
 | ||
|  |       if (net_outputs.lead[i*MDN_GROUP_SIZE + 9] > net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 9]) {
 | ||
|  |         mdn_max_idx = i;
 | ||
|  |       }
 | ||
|  |     }
 | ||
|  |     auto lead_future = framed.initLeadFuture();
 | ||
|  |     fill_lead(lead_future, net_outputs.lead, mdn_max_idx);
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     auto meta = framed.initMeta();
 | ||
|  |     fill_meta(meta, net_outputs.meta);
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     // send message
 | ||
|  |     auto words = capnp::messageToFlatArray(msg);
 | ||
|  |     auto bytes = words.asBytes();
 | ||
|  |     sock->send((char*)bytes.begin(), bytes.size());
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | void posenet_publish(PubSocket *sock, uint32_t frame_id,
 | ||
|  |                    const ModelDataRaw net_outputs, uint64_t timestamp_eof) {
 | ||
|  |   capnp::MallocMessageBuilder msg;
 | ||
|  |   cereal::Event::Builder event = msg.initRoot<cereal::Event>();
 | ||
|  |   event.setLogMonoTime(nanos_since_boot());
 | ||
|  | 
 | ||
|  |   float trans_arr[3];
 | ||
|  |   float trans_std_arr[3];
 | ||
|  |   float rot_arr[3];
 | ||
|  |   float rot_std_arr[3];
 | ||
|  | 
 | ||
|  |   for (int i =0; i < 3; i++) {
 | ||
|  |     trans_arr[i] = net_outputs.pose[i];
 | ||
|  |     trans_std_arr[i] = softplus(net_outputs.pose[6 + i]) + 1e-6;
 | ||
|  | 
 | ||
|  |     rot_arr[i] = M_PI * net_outputs.pose[3 + i] / 180.0;
 | ||
|  |     rot_std_arr[i] = M_PI * (softplus(net_outputs.pose[9 + i]) + 1e-6) / 180.0;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   auto posenetd = event.initCameraOdometry();
 | ||
|  |   kj::ArrayPtr<const float> trans_vs(&trans_arr[0], 3);
 | ||
|  |   posenetd.setTrans(trans_vs);
 | ||
|  |   kj::ArrayPtr<const float> rot_vs(&rot_arr[0], 3);
 | ||
|  |   posenetd.setRot(rot_vs);
 | ||
|  |   kj::ArrayPtr<const float> trans_std_vs(&trans_std_arr[0], 3);
 | ||
|  |   posenetd.setTransStd(trans_std_vs);
 | ||
|  |   kj::ArrayPtr<const float> rot_std_vs(&rot_std_arr[0], 3);
 | ||
|  |   posenetd.setRotStd(rot_std_vs);
 | ||
|  |   
 | ||
|  |   posenetd.setTimestampEof(timestamp_eof);
 | ||
|  |   posenetd.setFrameId(frame_id);
 | ||
|  | 
 | ||
|  |   auto words = capnp::messageToFlatArray(msg);
 | ||
|  |   auto bytes = words.asBytes();
 | ||
|  |   sock->send((char*)bytes.begin(), bytes.size());
 | ||
|  |   }
 |