|  |  |  | import math
 | 
					
						
							|  |  |  | from collections import defaultdict
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from common.numpy_fast import interp
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | _FCW_A_ACT_V = [-3., -2.]
 | 
					
						
							|  |  |  | _FCW_A_ACT_BP = [0., 30.]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FCWChecker():
 | 
					
						
							|  |  |  |   def __init__(self):
 | 
					
						
							|  |  |  |     self.reset_lead(0.0)
 | 
					
						
							|  |  |  |     self.common_counters = defaultdict(lambda: 0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def reset_lead(self, cur_time):
 | 
					
						
							|  |  |  |     self.last_fcw_a = 0.0
 | 
					
						
							|  |  |  |     self.v_lead_max = 0.0
 | 
					
						
							|  |  |  |     self.lead_seen_t = cur_time
 | 
					
						
							|  |  |  |     self.last_fcw_time = 0.0
 | 
					
						
							|  |  |  |     self.last_min_a = 0.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.counters = defaultdict(lambda: 0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   @staticmethod
 | 
					
						
							|  |  |  |   def calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead):
 | 
					
						
							|  |  |  |     max_ttc = 5.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     v_rel = v_ego - v_lead
 | 
					
						
							|  |  |  |     a_rel = a_ego - a_lead
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # assuming that closing gap ARel comes from lead vehicle decel,
 | 
					
						
							|  |  |  |     # then limit ARel so that v_lead will get to zero in no sooner than t_decel.
 | 
					
						
							|  |  |  |     # This helps underweighting ARel when v_lead is close to zero.
 | 
					
						
							|  |  |  |     t_decel = 2.
 | 
					
						
							|  |  |  |     a_rel = min(a_rel, v_lead / t_decel)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # delta of the quadratic equation to solve for ttc
 | 
					
						
							|  |  |  |     delta = v_rel**2 + 2 * x_lead * a_rel
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # assign an arbitrary high ttc value if there is no solution to ttc
 | 
					
						
							|  |  |  |     if delta < 0.1 or (math.sqrt(delta) + v_rel < 0.1):
 | 
					
						
							|  |  |  |       ttc = max_ttc
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       ttc = min(2 * x_lead / (math.sqrt(delta) + v_rel), max_ttc)
 | 
					
						
							|  |  |  |     return ttc
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, mpc_solution, cur_time, active, v_ego, a_ego, x_lead, v_lead, a_lead, y_lead, vlat_lead, fcw_lead, blinkers):
 | 
					
						
							|  |  |  |     mpc_solution_a = list(mpc_solution[0].a_ego)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.last_min_a = min(mpc_solution_a)
 | 
					
						
							|  |  |  |     self.v_lead_max = max(self.v_lead_max, v_lead)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.common_counters['blinkers'] = self.common_counters['blinkers'] + 10.0 / (20 * 3.0) if not blinkers else 0
 | 
					
						
							|  |  |  |     self.common_counters['v_ego'] = self.common_counters['v_ego'] + 1 if v_ego > 5.0 else 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (fcw_lead > 0.99):
 | 
					
						
							|  |  |  |       ttc = self.calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead)
 | 
					
						
							|  |  |  |       self.counters['ttc'] = self.counters['ttc'] + 1 if ttc < 2.5 else 0
 | 
					
						
							|  |  |  |       self.counters['v_lead_max'] = self.counters['v_lead_max'] + 1 if self.v_lead_max > 2.5 else 0
 | 
					
						
							|  |  |  |       self.counters['v_ego_lead'] = self.counters['v_ego_lead'] + 1 if v_ego > v_lead else 0
 | 
					
						
							|  |  |  |       self.counters['lead_seen'] = self.counters['lead_seen'] + 0.33
 | 
					
						
							|  |  |  |       self.counters['y_lead'] = self.counters['y_lead'] + 1 if abs(y_lead) < 1.0 else 0
 | 
					
						
							|  |  |  |       self.counters['vlat_lead'] = self.counters['vlat_lead'] + 1 if abs(vlat_lead) < 0.4 else 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       a_thr = interp(v_lead, _FCW_A_ACT_BP, _FCW_A_ACT_V)
 | 
					
						
							|  |  |  |       a_delta = min(mpc_solution_a[:15]) - min(0.0, a_ego)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       future_fcw_allowed = all(c >= 10 for c in self.counters.values())
 | 
					
						
							|  |  |  |       future_fcw_allowed = future_fcw_allowed and all(c >= 10 for c in self.common_counters.values())
 | 
					
						
							|  |  |  |       future_fcw = (self.last_min_a < -3.0 or a_delta < a_thr) and future_fcw_allowed
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if future_fcw and (self.last_fcw_time + 5.0 < cur_time):
 | 
					
						
							|  |  |  |         self.last_fcw_time = cur_time
 | 
					
						
							|  |  |  |         self.last_fcw_a = self.last_min_a
 | 
					
						
							|  |  |  |         return True
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return False
 |