open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
7.9 KiB

import numpy as np
import common.transformations.orientation as orient
import cv2
import math
FULL_FRAME_SIZE = (1164, 874)
W, H = FULL_FRAME_SIZE[0], FULL_FRAME_SIZE[1]
eon_focal_length = FOCAL = 910.0
# aka 'K' aka camera_frame_from_view_frame
eon_intrinsics = np.array([
[FOCAL, 0., W/2.],
[ 0., FOCAL, H/2.],
[ 0., 0., 1.]])
leon_dcam_intrinsics = np.array([
getting ready for Python 3 (#619) * tabs to spaces python 2 to 3: https://portingguide.readthedocs.io/en/latest/syntax.html#tabs-and-spaces * use the new except syntax python 2 to 3: https://portingguide.readthedocs.io/en/latest/exceptions.html#the-new-except-syntax * make relative imports absolute python 2 to 3: https://portingguide.readthedocs.io/en/latest/imports.html#absolute-imports * Queue renamed to queue in python 3 Use the six compatibility library to support both python 2 and 3: https://portingguide.readthedocs.io/en/latest/stdlib-reorg.html#renamed-modules * replace dict.has_key() with in python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#removed-dict-has-key * make dict views compatible with python 3 python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#dict-views-and-iterators Where needed, wrapping things that will be a view in python 3 with a list(). For example, if it's accessed with [] Python 3 has no iter*() methods, so just using the values() instead of itervalues() as long as it's not too performance intensive. Note that any minor performance hit of using a list instead of a view will go away when switching to python 3. If it is intensive, we could use the six version. * Explicitly use truncating division python 2 to 3: https://portingguide.readthedocs.io/en/latest/numbers.html#division python 3 treats / as float division. When we want the result to be an integer, use // * replace map() with list comprehension where a list result is needed. In python 3, map() returns an iterator. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * replace filter() with list comprehension In python 3, filter() returns an interatoooooooooooor. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * wrap zip() in list() where we need the result to be a list python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-zip * clean out some lint Removes these pylint warnings: ************* Module selfdrive.car.chrysler.chryslercan W: 15, 0: Unnecessary semicolon (unnecessary-semicolon) W: 16, 0: Unnecessary semicolon (unnecessary-semicolon) W: 25, 0: Unnecessary semicolon (unnecessary-semicolon) ************* Module common.dbc W:101, 0: Anomalous backslash in string: '\?'. String constant might be missing an r prefix. (anomalous-backslash-in-string) ************* Module selfdrive.car.gm.interface R:102, 6: Redefinition of ret.minEnableSpeed type from float to int (redefined-variable-type) R:103, 6: Redefinition of ret.mass type from int to float (redefined-variable-type) ************* Module selfdrive.updated R: 20, 6: Redefinition of r type from int to str (redefined-variable-type) old-commit-hash: 9dae0bfac4e54ec2b2e488d2b4ead1495c8f56d8
6 years ago
[650, 0, 816//2],
[ 0, 650, 612//2],
[ 0, 0, 1]])
eon_dcam_intrinsics = np.array([
getting ready for Python 3 (#619) * tabs to spaces python 2 to 3: https://portingguide.readthedocs.io/en/latest/syntax.html#tabs-and-spaces * use the new except syntax python 2 to 3: https://portingguide.readthedocs.io/en/latest/exceptions.html#the-new-except-syntax * make relative imports absolute python 2 to 3: https://portingguide.readthedocs.io/en/latest/imports.html#absolute-imports * Queue renamed to queue in python 3 Use the six compatibility library to support both python 2 and 3: https://portingguide.readthedocs.io/en/latest/stdlib-reorg.html#renamed-modules * replace dict.has_key() with in python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#removed-dict-has-key * make dict views compatible with python 3 python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#dict-views-and-iterators Where needed, wrapping things that will be a view in python 3 with a list(). For example, if it's accessed with [] Python 3 has no iter*() methods, so just using the values() instead of itervalues() as long as it's not too performance intensive. Note that any minor performance hit of using a list instead of a view will go away when switching to python 3. If it is intensive, we could use the six version. * Explicitly use truncating division python 2 to 3: https://portingguide.readthedocs.io/en/latest/numbers.html#division python 3 treats / as float division. When we want the result to be an integer, use // * replace map() with list comprehension where a list result is needed. In python 3, map() returns an iterator. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * replace filter() with list comprehension In python 3, filter() returns an interatoooooooooooor. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * wrap zip() in list() where we need the result to be a list python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-zip * clean out some lint Removes these pylint warnings: ************* Module selfdrive.car.chrysler.chryslercan W: 15, 0: Unnecessary semicolon (unnecessary-semicolon) W: 16, 0: Unnecessary semicolon (unnecessary-semicolon) W: 25, 0: Unnecessary semicolon (unnecessary-semicolon) ************* Module common.dbc W:101, 0: Anomalous backslash in string: '\?'. String constant might be missing an r prefix. (anomalous-backslash-in-string) ************* Module selfdrive.car.gm.interface R:102, 6: Redefinition of ret.minEnableSpeed type from float to int (redefined-variable-type) R:103, 6: Redefinition of ret.mass type from int to float (redefined-variable-type) ************* Module selfdrive.updated R: 20, 6: Redefinition of r type from int to str (redefined-variable-type) old-commit-hash: 9dae0bfac4e54ec2b2e488d2b4ead1495c8f56d8
6 years ago
[860, 0, 1152//2],
[ 0, 860, 864//2],
[ 0, 0, 1]])
# aka 'K_inv' aka view_frame_from_camera_frame
eon_intrinsics_inv = np.linalg.inv(eon_intrinsics)
# device/mesh : x->forward, y-> right, z->down
# view : x->right, y->down, z->forward
device_frame_from_view_frame = np.array([
[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]
])
view_frame_from_device_frame = device_frame_from_view_frame.T
def get_calib_from_vp(vp):
vp_norm = normalize(vp)
yaw_calib = np.arctan(vp_norm[0])
pitch_calib = -np.arctan(vp_norm[1]*np.cos(yaw_calib))
roll_calib = 0
return roll_calib, pitch_calib, yaw_calib
# aka 'extrinsic_matrix'
# road : x->forward, y -> left, z->up
def get_view_frame_from_road_frame(roll, pitch, yaw, height):
device_from_road = orient.rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1]))
view_from_road = view_frame_from_device_frame.dot(device_from_road)
return np.hstack((view_from_road, [[0], [height], [0]]))
def vp_from_ke(m):
"""
Computes the vanishing point from the product of the intrinsic and extrinsic
matrices C = KE.
The vanishing point is defined as lim x->infinity C (x, 0, 0, 1).T
"""
return (m[0, 0]/m[2,0], m[1,0]/m[2,0])
def roll_from_ke(m):
# note: different from calibration.h/RollAnglefromKE: i think that one's just wrong
return np.arctan2(-(m[1, 0] - m[1, 1] * m[2, 0] / m[2, 1]),
-(m[0, 0] - m[0, 1] * m[2, 0] / m[2, 1]))
def normalize(img_pts, intrinsics=eon_intrinsics):
# normalizes image coordinates
# accepts single pt or array of pts
intrinsics_inv = np.linalg.inv(intrinsics)
img_pts = np.array(img_pts)
input_shape = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1))))
img_pts_normalized = img_pts.dot(intrinsics_inv.T)
img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan
return img_pts_normalized[:,:2].reshape(input_shape)
def denormalize(img_pts, intrinsics=eon_intrinsics):
# denormalizes image coordinates
# accepts single pt or array of pts
img_pts = np.array(img_pts)
input_shape = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1))))
img_pts_denormalized = img_pts.dot(intrinsics.T)
img_pts_denormalized[img_pts_denormalized[:,0] > W] = np.nan
img_pts_denormalized[img_pts_denormalized[:,0] < 0] = np.nan
img_pts_denormalized[img_pts_denormalized[:,1] > H] = np.nan
img_pts_denormalized[img_pts_denormalized[:,1] < 0] = np.nan
return img_pts_denormalized[:,:2].reshape(input_shape)
def device_from_ecef(pos_ecef, orientation_ecef, pt_ecef):
# device from ecef frame
# device frame is x -> forward, y-> right, z -> down
# accepts single pt or array of pts
input_shape = pt_ecef.shape
pt_ecef = np.atleast_2d(pt_ecef)
ecef_from_device_rot = orient.rotations_from_quats(orientation_ecef)
device_from_ecef_rot = ecef_from_device_rot.T
pt_ecef_rel = pt_ecef - pos_ecef
pt_device = np.einsum('jk,ik->ij', device_from_ecef_rot, pt_ecef_rel)
return pt_device.reshape(input_shape)
def img_from_device(pt_device):
# img coordinates from pts in device frame
# first transforms to view frame, then to img coords
# accepts single pt or array of pts
input_shape = pt_device.shape
pt_device = np.atleast_2d(pt_device)
pt_view = np.einsum('jk,ik->ij', view_frame_from_device_frame, pt_device)
# This function should never return negative depths
pt_view[pt_view[:,2] < 0] = np.nan
pt_img = pt_view/pt_view[:,2:3]
return pt_img.reshape(input_shape)[:,:2]
#TODO please use generic img transform below
def rotate_img(img, eulers, crop=None, intrinsics=eon_intrinsics):
size = img.shape[:2]
rot = orient.rot_from_euler(eulers)
quadrangle = np.array([[0, 0],
[size[1]-1, 0],
[0, size[0]-1],
[size[1]-1, size[0]-1]], dtype=np.float32)
quadrangle_norm = np.hstack((normalize(quadrangle, intrinsics=intrinsics), np.ones((4,1))))
warped_quadrangle_full = np.einsum('ij, kj->ki', intrinsics.dot(rot), quadrangle_norm)
warped_quadrangle = np.column_stack((warped_quadrangle_full[:,0]/warped_quadrangle_full[:,2],
warped_quadrangle_full[:,1]/warped_quadrangle_full[:,2])).astype(np.float32)
if crop:
W_border = (size[1] - crop[0])/2
H_border = (size[0] - crop[1])/2
outside_crop = (((warped_quadrangle[:,0] < W_border) |
(warped_quadrangle[:,0] >= size[1] - W_border)) &
((warped_quadrangle[:,1] < H_border) |
(warped_quadrangle[:,1] >= size[0] - H_border)))
if not outside_crop.all():
raise ValueError("warped image not contained inside crop")
else:
H_border, W_border = 0, 0
M = cv2.getPerspectiveTransform(quadrangle, warped_quadrangle)
img_warped = cv2.warpPerspective(img, M, size[::-1])
return img_warped[H_border: size[0] - H_border,
W_border: size[1] - W_border]
def transform_img(base_img,
augment_trans=np.array([0,0,0]),
augment_eulers=np.array([0,0,0]),
from_intr=eon_intrinsics,
to_intr=eon_intrinsics,
calib_rot_view=None,
output_size=None,
pretransform=None,
top_hacks=True):
size = base_img.shape[:2]
if not output_size:
output_size = size[::-1]
cy = from_intr[1,2]
def get_M(h=1.22):
quadrangle = np.array([[0, cy + 20],
[size[1]-1, cy + 20],
[0, size[0]-1],
[size[1]-1, size[0]-1]], dtype=np.float32)
quadrangle_norm = np.hstack((normalize(quadrangle, intrinsics=from_intr), np.ones((4,1))))
quadrangle_world = np.column_stack((h*quadrangle_norm[:,0]/quadrangle_norm[:,1],
h*np.ones(4),
h/quadrangle_norm[:,1]))
rot = orient.rot_from_euler(augment_eulers)
if calib_rot_view is not None:
rot = calib_rot_view.dot(rot)
to_extrinsics = np.hstack((rot.T, -augment_trans[:,None]))
to_KE = to_intr.dot(to_extrinsics)
warped_quadrangle_full = np.einsum('jk,ik->ij', to_KE, np.hstack((quadrangle_world, np.ones((4,1)))))
warped_quadrangle = np.column_stack((warped_quadrangle_full[:,0]/warped_quadrangle_full[:,2],
warped_quadrangle_full[:,1]/warped_quadrangle_full[:,2])).astype(np.float32)
M = cv2.getPerspectiveTransform(quadrangle, warped_quadrangle.astype(np.float32))
return M
M = get_M()
if pretransform is not None:
M = M.dot(pretransform)
augmented_rgb = cv2.warpPerspective(base_img, M, output_size, borderMode=cv2.BORDER_REPLICATE)
if top_hacks:
cyy = int(math.ceil(to_intr[1,2]))
M = get_M(1000)
if pretransform is not None:
M = M.dot(pretransform)
augmented_rgb[:cyy] = cv2.warpPerspective(base_img, M, (output_size[0], cyy), borderMode=cv2.BORDER_REPLICATE)
return augmented_rgb
def yuv_crop(frame, output_size, center=None):
# output_size in camera coordinates so u,v
# center in array coordinates so row, column
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
if not center:
center = (rgb.shape[0]/2, rgb.shape[1]/2)
rgb_crop = rgb[center[0] - output_size[1]/2: center[0] + output_size[1]/2,
center[1] - output_size[0]/2: center[1] + output_size[0]/2]
return cv2.cvtColor(rgb_crop, cv2.COLOR_RGB2YUV_I420)