open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

290 lines
7.4 KiB

//==============================================================================
//
// Copyright (c) 2017-2018 Qualcomm Technologies, Inc.
// All Rights Reserved.
// Confidential and Proprietary - Qualcomm Technologies, Inc.
//
//==============================================================================
#ifndef _IUSER_BUFFER_HPP
#define _IUSER_BUFFER_HPP
#include "TensorShape.hpp"
#include "ZdlExportDefine.hpp"
namespace zdl {
namespace DlSystem {
/** @addtogroup c_plus_plus_apis C++
@{ */
/**
* @brief .
*
* A base class buffer encoding type
*/
class ZDL_EXPORT UserBufferEncoding {
public:
/**
* @brief .
*
* An enum class of all supported element types in a IUserBuffer
*/
enum class ElementType_t
{
/// Unknown element type.
UNKNOWN = 0,
/// Each element is presented by float.
FLOAT = 1,
/// Each element is presented by an unsigned int.
UNSIGNED8BIT = 2,
/// Each element is presented by an 8-bit quantized value.
TF8 = 10
};
/**
* @brief Retrieves the size of the element, in bytes.
*
* @return Size of the element, in bytes.
*/
virtual size_t getElementSize() const noexcept = 0;
/**
* @brief Retrieves the element type
*
* @return Element type
*/
ElementType_t getElementType() const noexcept {return m_ElementType;};
virtual ~UserBufferEncoding() {}
protected:
UserBufferEncoding(ElementType_t elementType) : m_ElementType(elementType) {};
private:
const ElementType_t m_ElementType;
};
/**
* @brief .
*
* A base class buffer source type
*
* @note User buffer from CPU support all kinds of runtimes;
* User buffer from GLBUFFER support only GPU runtime.
*/
class ZDL_EXPORT UserBufferSource {
public:
enum class SourceType_t
{
/// Unknown buffer source type.
UNKNOWN = 0,
/// The network inputs are from CPU buffer.
CPU = 1,
/// The network inputs are from OpenGL buffer.
GLBUFFER = 2
};
/**
* @brief Retrieves the source type
*
* @return Source type
*/
SourceType_t getSourceType() const noexcept {return m_SourceType;};
protected:
UserBufferSource(SourceType_t sourceType): m_SourceType(sourceType) {};
private:
const SourceType_t m_SourceType;
};
/**
* @brief .
*
* An source type where input data is delivered from OpenGL buffer
*/
class ZDL_EXPORT UserBufferSourceGLBuffer : public UserBufferSource{
public:
UserBufferSourceGLBuffer() : UserBufferSource(SourceType_t::GLBUFFER) {};
};
/**
* @brief .
*
* An encoding type where each element is represented by an unsigned int
*/
class ZDL_EXPORT UserBufferEncodingUnsigned8Bit : public UserBufferEncoding {
public:
UserBufferEncodingUnsigned8Bit() : UserBufferEncoding(ElementType_t::UNSIGNED8BIT) {};
size_t getElementSize() const noexcept override;
protected:
UserBufferEncodingUnsigned8Bit(ElementType_t elementType) : UserBufferEncoding(elementType) {};
};
/**
* @brief .
*
* An encoding type where each element is represented by a float
*/
class ZDL_EXPORT UserBufferEncodingFloat : public UserBufferEncoding {
public:
UserBufferEncodingFloat() : UserBufferEncoding(ElementType_t::FLOAT) {};
size_t getElementSize() const noexcept override;
};
/**
* @brief .
*
* An encoding type where each element is represented by tf8, which is an
* 8-bit quantizd value, which has an exact representation of 0.0
*/
class ZDL_EXPORT UserBufferEncodingTf8 : public UserBufferEncodingUnsigned8Bit {
public:
UserBufferEncodingTf8() = delete;
UserBufferEncodingTf8(unsigned char stepFor0, float stepSize) :
UserBufferEncodingUnsigned8Bit(ElementType_t::TF8),
m_StepExactly0(stepFor0),
m_QuantizedStepSize(stepSize) {};
/**
* @brief Sets the step value that represents 0
*
* @param[in] stepExactly0 The step value that represents 0
*
*/
void setStepExactly0(const unsigned char stepExactly0) {
m_StepExactly0 = stepExactly0;
}
/**
* @brief Sets the float value that each step represents
*
* @param[in] quantizedStepSize The float value of each step size
*
*/
void setQuantizedStepSize(const float quantizedStepSize) {
m_QuantizedStepSize = quantizedStepSize;
}
/**
* @brief Retrieves the step that represents 0.0
*
* @return Step value
*/
unsigned char getStepExactly0() const {
return m_StepExactly0;
}
/**
* Calculates the minimum floating point value that
* can be represented with this encoding.
*
* @return Minimum representable floating point value
*/
float getMin() const {
return m_QuantizedStepSize * (0 - m_StepExactly0);
}
/**
* Calculates the maximum floating point value that
* can be represented with this encoding.
*
* @return Maximum representable floating point value
*/
float getMax() const {
return m_QuantizedStepSize * (255 - m_StepExactly0);
}
/**
* @brief Retrieves the step size
*
* @return Step size
*/
float getQuantizedStepSize() const {
return m_QuantizedStepSize;
}
private:
unsigned char m_StepExactly0;
float m_QuantizedStepSize;
};
/**
* @brief UserBuffer contains a pointer and info on how to walk it and interpret its content.
*/
class ZDL_EXPORT IUserBuffer {
public:
virtual ~IUserBuffer() = default;
/**
* @brief Retrieves the total number of bytes between elements in each dimension if
* the buffer were to be interpreted as a multi-dimensional array.
*
* @return Number of bytes between elements in each dimension.
* e.g. A tightly packed tensor of floats with dimensions [4, 3, 2] would
* return strides of [24, 8, 4].
*/
virtual const TensorShape& getStrides() const = 0;
/**
* @brief Retrieves the size of the buffer, in bytes.
*
* @return Size of the underlying buffer, in bytes.
*/
virtual size_t getSize() const = 0;
/**
* @brief Changes the underlying memory that backs the UserBuffer.
*
* This can be used to avoid creating multiple UserBuffer objects
* when the only thing that differs is the memory location.
*
* @param[in] buffer Pointer to the memory location
*
* @return Whether the set succeeds.
*/
virtual bool setBufferAddress(void *buffer) noexcept = 0;
/**
* @brief Gets a const reference to the data encoding object of
* the underlying buffer
*
* This is necessary when the UserBuffer is filled by SNPE with
* data types such as TF8, where the caller needs to know the quantization
* parameters in order to interpret the data properly
*
* @return A read-only encoding object
*/
virtual const UserBufferEncoding& getEncoding() const noexcept = 0;
/**
* @brief Gets a reference to the data encoding object of
* the underlying buffer
*
* This is necessary when the UserBuffer is re-used, and the encoding
* parameters can change. For example, each input can be quantized with
* different step sizes.
*
* @return Data encoding meta-data
*/
virtual UserBufferEncoding& getEncoding() noexcept = 0;
};
/** @} */ /* end_addtogroup c_plus_plus_apis C++ */
}
}
#endif