|  |  |  | import os
 | 
					
						
							|  |  |  | import capnp
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | from cereal import log
 | 
					
						
							|  |  |  | from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ConfidenceClass = log.ModelDataV2.ConfidenceClass
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class PublishState:
 | 
					
						
							|  |  |  |   def __init__(self):
 | 
					
						
							|  |  |  |     self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
 | 
					
						
							|  |  |  |     self.prev_brake_5ms2_probs = np.zeros(ModelConstants.FCW_5MS2_PROBS_WIDTH, dtype=np.float32)
 | 
					
						
							|  |  |  |     self.prev_brake_3ms2_probs = np.zeros(ModelConstants.FCW_3MS2_PROBS_WIDTH, dtype=np.float32)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
 | 
					
						
							|  |  |  |   builder.t = t
 | 
					
						
							|  |  |  |   builder.x = x.tolist()
 | 
					
						
							|  |  |  |   builder.y = y.tolist()
 | 
					
						
							|  |  |  |   builder.z = z.tolist()
 | 
					
						
							|  |  |  |   if x_std is not None:
 | 
					
						
							|  |  |  |     builder.xStd = x_std.tolist()
 | 
					
						
							|  |  |  |   if y_std is not None:
 | 
					
						
							|  |  |  |     builder.yStd = y_std.tolist()
 | 
					
						
							|  |  |  |   if z_std is not None:
 | 
					
						
							|  |  |  |     builder.zStd = z_std.tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None):
 | 
					
						
							|  |  |  |   builder.t = t
 | 
					
						
							|  |  |  |   builder.x = x.tolist()
 | 
					
						
							|  |  |  |   builder.y = y.tolist()
 | 
					
						
							|  |  |  |   builder.v = v.tolist()
 | 
					
						
							|  |  |  |   builder.a = a.tolist()
 | 
					
						
							|  |  |  |   if x_std is not None:
 | 
					
						
							|  |  |  |     builder.xStd = x_std.tolist()
 | 
					
						
							|  |  |  |   if y_std is not None:
 | 
					
						
							|  |  |  |     builder.yStd = y_std.tolist()
 | 
					
						
							|  |  |  |   if v_std is not None:
 | 
					
						
							|  |  |  |     builder.vStd = v_std.tolist()
 | 
					
						
							|  |  |  |   if a_std is not None:
 | 
					
						
							|  |  |  |     builder.aStd = a_std.tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: dict[str, np.ndarray], publish_state: PublishState,
 | 
					
						
							|  |  |  |                    vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float,
 | 
					
						
							|  |  |  |                    timestamp_eof: int, model_execution_time: float, valid: bool) -> None:
 | 
					
						
							|  |  |  |   frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
 | 
					
						
							|  |  |  |   msg.valid = valid
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   modelV2 = msg.modelV2
 | 
					
						
							|  |  |  |   modelV2.frameId = vipc_frame_id
 | 
					
						
							|  |  |  |   modelV2.frameIdExtra = vipc_frame_id_extra
 | 
					
						
							|  |  |  |   modelV2.frameAge = frame_age
 | 
					
						
							|  |  |  |   modelV2.frameDropPerc = frame_drop * 100
 | 
					
						
							|  |  |  |   modelV2.timestampEof = timestamp_eof
 | 
					
						
							|  |  |  |   modelV2.modelExecutionTime = model_execution_time
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # plan
 | 
					
						
							|  |  |  |   position = modelV2.position
 | 
					
						
							|  |  |  |   fill_xyzt(position, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T)
 | 
					
						
							|  |  |  |   velocity = modelV2.velocity
 | 
					
						
							|  |  |  |   fill_xyzt(velocity, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T)
 | 
					
						
							|  |  |  |   acceleration = modelV2.acceleration
 | 
					
						
							|  |  |  |   fill_xyzt(acceleration, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T)
 | 
					
						
							|  |  |  |   orientation = modelV2.orientation
 | 
					
						
							|  |  |  |   fill_xyzt(orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
 | 
					
						
							|  |  |  |   orientation_rate = modelV2.orientationRate
 | 
					
						
							|  |  |  |   fill_xyzt(orientation_rate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # lateral planning
 | 
					
						
							|  |  |  |   action = modelV2.action
 | 
					
						
							|  |  |  |   action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # times at X_IDXS according to model plan
 | 
					
						
							|  |  |  |   PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
 | 
					
						
							|  |  |  |   PLAN_T_IDXS[0] = 0.0
 | 
					
						
							|  |  |  |   plan_x = net_output_data['plan'][0,:,Plan.POSITION][:,0].tolist()
 | 
					
						
							|  |  |  |   for xidx in range(1, ModelConstants.IDX_N):
 | 
					
						
							|  |  |  |     tidx = 0
 | 
					
						
							|  |  |  |     # increment tidx until we find an element that's further away than the current xidx
 | 
					
						
							|  |  |  |     while tidx < ModelConstants.IDX_N - 1 and plan_x[tidx+1] < ModelConstants.X_IDXS[xidx]:
 | 
					
						
							|  |  |  |       tidx += 1
 | 
					
						
							|  |  |  |     if tidx == ModelConstants.IDX_N - 1:
 | 
					
						
							|  |  |  |       # if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
 | 
					
						
							|  |  |  |       PLAN_T_IDXS[xidx] = ModelConstants.T_IDXS[ModelConstants.IDX_N - 1]
 | 
					
						
							|  |  |  |       break
 | 
					
						
							|  |  |  |     # interpolate to find `t` for the current xidx
 | 
					
						
							|  |  |  |     current_x_val = plan_x[tidx]
 | 
					
						
							|  |  |  |     next_x_val = plan_x[tidx+1]
 | 
					
						
							|  |  |  |     p = (ModelConstants.X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val) if abs(next_x_val - current_x_val) > 1e-9 else float('nan')
 | 
					
						
							|  |  |  |     PLAN_T_IDXS[xidx] = p * ModelConstants.T_IDXS[tidx+1] + (1 - p) * ModelConstants.T_IDXS[tidx]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # lane lines
 | 
					
						
							|  |  |  |   modelV2.init('laneLines', 4)
 | 
					
						
							|  |  |  |   for i in range(4):
 | 
					
						
							|  |  |  |     lane_line = modelV2.laneLines[i]
 | 
					
						
							|  |  |  |     fill_xyzt(lane_line, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1])
 | 
					
						
							|  |  |  |   modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist()
 | 
					
						
							|  |  |  |   modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # road edges
 | 
					
						
							|  |  |  |   modelV2.init('roadEdges', 2)
 | 
					
						
							|  |  |  |   for i in range(2):
 | 
					
						
							|  |  |  |     road_edge = modelV2.roadEdges[i]
 | 
					
						
							|  |  |  |     fill_xyzt(road_edge, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1])
 | 
					
						
							|  |  |  |   modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # leads
 | 
					
						
							|  |  |  |   modelV2.init('leadsV3', 3)
 | 
					
						
							|  |  |  |   for i in range(3):
 | 
					
						
							|  |  |  |     lead = modelV2.leadsV3[i]
 | 
					
						
							|  |  |  |     fill_xyvat(lead, ModelConstants.LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T)
 | 
					
						
							|  |  |  |     lead.prob = net_output_data['lead_prob'][0,i].tolist()
 | 
					
						
							|  |  |  |     lead.probTime = ModelConstants.LEAD_T_OFFSETS[i]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # meta
 | 
					
						
							|  |  |  |   meta = modelV2.meta
 | 
					
						
							|  |  |  |   meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist()
 | 
					
						
							|  |  |  |   meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist()
 | 
					
						
							|  |  |  |   meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item()
 | 
					
						
							|  |  |  |   meta.init('disengagePredictions')
 | 
					
						
							|  |  |  |   disengage_predictions = meta.disengagePredictions
 | 
					
						
							|  |  |  |   disengage_predictions.t = ModelConstants.META_T_IDXS
 | 
					
						
							|  |  |  |   disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist()
 | 
					
						
							|  |  |  |   disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist()
 | 
					
						
							|  |  |  |   disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist()
 | 
					
						
							|  |  |  |   disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
 | 
					
						
							|  |  |  |   disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
 | 
					
						
							|  |  |  |   disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:]
 | 
					
						
							|  |  |  |   publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0]
 | 
					
						
							|  |  |  |   publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:]
 | 
					
						
							|  |  |  |   publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0]
 | 
					
						
							|  |  |  |   hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > ModelConstants.FCW_THRESHOLDS_5MS2).all() and \
 | 
					
						
							|  |  |  |     (publish_state.prev_brake_3ms2_probs > ModelConstants.FCW_THRESHOLDS_3MS2).all()
 | 
					
						
							|  |  |  |   meta.hardBrakePredicted = hard_brake_predicted.item()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # temporal pose
 | 
					
						
							|  |  |  |   temporal_pose = modelV2.temporalPose
 | 
					
						
							|  |  |  |   temporal_pose.trans = net_output_data['sim_pose'][0,:3].tolist()
 | 
					
						
							|  |  |  |   temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:3].tolist()
 | 
					
						
							|  |  |  |   temporal_pose.rot = net_output_data['sim_pose'][0,3:].tolist()
 | 
					
						
							|  |  |  |   temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,3:].tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # confidence
 | 
					
						
							|  |  |  |   if vipc_frame_id % (2*ModelConstants.MODEL_FREQ) == 0:
 | 
					
						
							|  |  |  |     # any disengage prob
 | 
					
						
							|  |  |  |     brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE]
 | 
					
						
							|  |  |  |     gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE]
 | 
					
						
							|  |  |  |     steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE]
 | 
					
						
							|  |  |  |     any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs))
 | 
					
						
							|  |  |  |     # independent disengage prob for each 2s slice
 | 
					
						
							|  |  |  |     ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])]
 | 
					
						
							|  |  |  |     # rolling buf for 2, 4, 6, 8, 10s
 | 
					
						
							|  |  |  |     publish_state.disengage_buffer[:-ModelConstants.DISENGAGE_WIDTH] = publish_state.disengage_buffer[ModelConstants.DISENGAGE_WIDTH:]
 | 
					
						
							|  |  |  |     publish_state.disengage_buffer[-ModelConstants.DISENGAGE_WIDTH:] = ind_disengage_probs
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   score = 0.
 | 
					
						
							|  |  |  |   for i in range(ModelConstants.DISENGAGE_WIDTH):
 | 
					
						
							|  |  |  |     score += publish_state.disengage_buffer[i*ModelConstants.DISENGAGE_WIDTH+ModelConstants.DISENGAGE_WIDTH-1-i].item() / ModelConstants.DISENGAGE_WIDTH
 | 
					
						
							|  |  |  |   if score < ModelConstants.RYG_GREEN:
 | 
					
						
							|  |  |  |     modelV2.confidence = ConfidenceClass.green
 | 
					
						
							|  |  |  |   elif score < ModelConstants.RYG_YELLOW:
 | 
					
						
							|  |  |  |     modelV2.confidence = ConfidenceClass.yellow
 | 
					
						
							|  |  |  |   else:
 | 
					
						
							|  |  |  |     modelV2.confidence = ConfidenceClass.red
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # raw prediction if enabled
 | 
					
						
							|  |  |  |   if SEND_RAW_PRED:
 | 
					
						
							|  |  |  |     modelV2.rawPredictions = net_output_data['raw_pred'].tobytes()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: dict[str, np.ndarray],
 | 
					
						
							|  |  |  |                   vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None:
 | 
					
						
							|  |  |  |   msg.valid = live_calib_seen & (vipc_dropped_frames < 1)
 | 
					
						
							|  |  |  |   cameraOdometry = msg.cameraOdometry
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   cameraOdometry.frameId = vipc_frame_id
 | 
					
						
							|  |  |  |   cameraOdometry.timestampEof = timestamp_eof
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   cameraOdometry.trans = net_output_data['pose'][0,:3].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.rot = net_output_data['pose'][0,3:].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist()
 | 
					
						
							|  |  |  |   cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()
 |