open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

104 lines
3.6 KiB

import numpy as np
from common.realtime import DT_CTRL
from selfdrive.car.body import bodycan
from opendbc.can.packer import CANPacker
from selfdrive.car.body.values import SPEED_FROM_RPM
MAX_TORQUE = 500
MAX_TORQUE_RATE = 50
MAX_ANGLE_ERROR = 7
MAX_POS_INTEGRATOR = 0.2 # meters
MAX_TURN_INTEGRATOR = 0.1 # meters
class CarController():
def __init__(self, dbc_name, CP, VM):
self.frame = 0
self.packer = CANPacker(dbc_name)
self.i_speed = 0
self.i_speed_diff = 0
self.i_balance = 0
self.d_balance = 0
self.torque_r_filtered = 0.
self.torque_l_filtered = 0.
@staticmethod
def deadband_filter(torque, deadband):
if torque > 0:
torque += deadband
else:
torque -= deadband
return torque
def update(self, CC, CS):
torque_l = 0
torque_r = 0
llk_valid = len(CC.orientationNED) > 0 and len(CC.angularVelocity) > 0
if CC.enabled and llk_valid:
# Read these from the joystick
# TODO: this isn't acceleration, okay?
speed_desired = CC.actuators.accel / 5.
speed_diff_desired = -CC.actuators.steer
# Setpoint speed PID
kp_speed = 0.001 / SPEED_FROM_RPM
ki_speed = 0.002 / SPEED_FROM_RPM
speed_measured = SPEED_FROM_RPM * (CS.out.wheelSpeeds.fl + CS.out.wheelSpeeds.fr) / 2.
speed_error = speed_desired - speed_measured
self.i_speed += speed_error * DT_CTRL
self.i_speed = np.clip(self.i_speed, -MAX_POS_INTEGRATOR, MAX_POS_INTEGRATOR)
set_point = kp_speed * speed_error + ki_speed * self.i_speed
# Balancing PID
kp_balance = 1300
ki_balance = 0
kd_balance = 280
# Clip angle error, this is enough to get up from stands
p_balance = np.clip((-CC.orientationNED[1]) - set_point, np.radians(-MAX_ANGLE_ERROR), np.radians(MAX_ANGLE_ERROR))
self.i_balance += CS.out.wheelSpeeds.fl + CS.out.wheelSpeeds.fr
self.d_balance = np.clip(-CC.angularVelocity[1], -1., 1.)
torque = int(np.clip((p_balance*kp_balance + self.i_balance*ki_balance + self.d_balance*kd_balance), -1000, 1000))
# yaw recovery PID
kp_turn = 0.95 / SPEED_FROM_RPM
ki_turn = 0.1 / SPEED_FROM_RPM
speed_diff_measured = SPEED_FROM_RPM * (CS.out.wheelSpeeds.fl - CS.out.wheelSpeeds.fr)
speed_diff_error = speed_diff_measured - speed_diff_desired
self.i_speed_diff += speed_diff_error * DT_CTRL
self.i_speed_diff = np.clip(self.i_speed_diff, -MAX_TURN_INTEGRATOR, MAX_TURN_INTEGRATOR)
torque_diff = int(np.clip(kp_turn * speed_diff_error + ki_turn * self.i_speed_diff, -100, 100))
# Combine 2 PIDs outputs
torque_r = torque + torque_diff
torque_l = torque - torque_diff
# Torque rate limits
self.torque_r_filtered = np.clip(self.deadband_filter(torque_r, 10),
self.torque_r_filtered - MAX_TORQUE_RATE,
self.torque_r_filtered + MAX_TORQUE_RATE)
self.torque_l_filtered = np.clip(self.deadband_filter(torque_l, 10),
self.torque_l_filtered - MAX_TORQUE_RATE,
self.torque_l_filtered + MAX_TORQUE_RATE)
torque_r = int(np.clip(self.torque_r_filtered, -MAX_TORQUE, MAX_TORQUE))
torque_l = int(np.clip(self.torque_l_filtered, -MAX_TORQUE, MAX_TORQUE))
can_sends = []
can_sends.append(bodycan.create_control(self.packer, torque_l, torque_r, self.frame // 2))
new_actuators = CC.actuators.copy()
new_actuators.accel = torque_l
new_actuators.steer = torque_r
self.frame += 1
return new_actuators, can_sends