|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | from common.realtime import sec_since_boot, DT_MDL
 | 
					
						
							|  |  |  | from common.numpy_fast import interp
 | 
					
						
							|  |  |  | from system.swaglog import cloudlog
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.desire_helper import DesireHelper
 | 
					
						
							|  |  |  | import cereal.messaging as messaging
 | 
					
						
							|  |  |  | from cereal import log
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | TRAJECTORY_SIZE = 33
 | 
					
						
							|  |  |  | CAMERA_OFFSET = 0.04
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PATH_COST = 1.0
 | 
					
						
							|  |  |  | LATERAL_MOTION_COST = 0.11
 | 
					
						
							|  |  |  | LATERAL_ACCEL_COST = 0.0
 | 
					
						
							|  |  |  | LATERAL_JERK_COST = 0.04
 | 
					
						
							|  |  |  | # Extreme steering rate is unpleasant, even
 | 
					
						
							|  |  |  | # when it does not cause bad jerk.
 | 
					
						
							|  |  |  | # TODO this cost should be lowered when low
 | 
					
						
							|  |  |  | # speed lateral control is stable on all cars
 | 
					
						
							|  |  |  | STEERING_RATE_COST = 700.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class LateralPlanner:
 | 
					
						
							|  |  |  |   def __init__(self, CP):
 | 
					
						
							|  |  |  |     self.DH = DesireHelper()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Vehicle model parameters used to calculate lateral movement of car
 | 
					
						
							|  |  |  |     self.factor1 = CP.wheelbase - CP.centerToFront
 | 
					
						
							|  |  |  |     self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
 | 
					
						
							|  |  |  |     self.last_cloudlog_t = 0
 | 
					
						
							|  |  |  |     self.solution_invalid_cnt = 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
 | 
					
						
							|  |  |  |     self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
 | 
					
						
							|  |  |  |     self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
 | 
					
						
							|  |  |  |     self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,))
 | 
					
						
							|  |  |  |     self.t_idxs = np.arange(TRAJECTORY_SIZE)
 | 
					
						
							|  |  |  |     self.y_pts = np.zeros(TRAJECTORY_SIZE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.lat_mpc = LateralMpc()
 | 
					
						
							|  |  |  |     self.reset_mpc(np.zeros(4))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def reset_mpc(self, x0=np.zeros(4)):
 | 
					
						
							|  |  |  |     self.x0 = x0
 | 
					
						
							|  |  |  |     self.lat_mpc.reset(x0=self.x0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, sm):
 | 
					
						
							|  |  |  |     # clip speed , lateral planning is not possible at 0 speed
 | 
					
						
							|  |  |  |     measured_curvature = sm['controlsState'].curvature
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Parse model predictions
 | 
					
						
							|  |  |  |     md = sm['modelV2']
 | 
					
						
							|  |  |  |     if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
 | 
					
						
							|  |  |  |       self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
 | 
					
						
							|  |  |  |       self.t_idxs = np.array(md.position.t)
 | 
					
						
							|  |  |  |       self.plan_yaw = np.array(md.orientation.z)
 | 
					
						
							|  |  |  |       self.plan_yaw_rate = np.array(md.orientationRate.z)
 | 
					
						
							|  |  |  |       self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
 | 
					
						
							|  |  |  |       car_speed = np.linalg.norm(self.velocity_xyz, axis=1)
 | 
					
						
							|  |  |  |       self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
 | 
					
						
							|  |  |  |       self.v_ego = self.v_plan[0]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Lane change logic
 | 
					
						
							|  |  |  |     desire_state = md.meta.desireState
 | 
					
						
							|  |  |  |     if len(desire_state):
 | 
					
						
							|  |  |  |       self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
 | 
					
						
							|  |  |  |       self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
 | 
					
						
							|  |  |  |     lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
 | 
					
						
							|  |  |  |     self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.lat_mpc.set_weights(PATH_COST, LATERAL_MOTION_COST,
 | 
					
						
							|  |  |  |                              LATERAL_ACCEL_COST, LATERAL_JERK_COST,
 | 
					
						
							|  |  |  |                              STEERING_RATE_COST)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     y_pts = self.path_xyz[:LAT_MPC_N+1, 1]
 | 
					
						
							|  |  |  |     heading_pts = self.plan_yaw[:LAT_MPC_N+1]
 | 
					
						
							|  |  |  |     yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1]
 | 
					
						
							|  |  |  |     self.y_pts = y_pts
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     assert len(y_pts) == LAT_MPC_N + 1
 | 
					
						
							|  |  |  |     assert len(heading_pts) == LAT_MPC_N + 1
 | 
					
						
							|  |  |  |     assert len(yaw_rate_pts) == LAT_MPC_N + 1
 | 
					
						
							|  |  |  |     lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf)
 | 
					
						
							|  |  |  |     p = np.column_stack([self.v_plan, lateral_factor])
 | 
					
						
							|  |  |  |     self.lat_mpc.run(self.x0,
 | 
					
						
							|  |  |  |                      p,
 | 
					
						
							|  |  |  |                      y_pts,
 | 
					
						
							|  |  |  |                      heading_pts,
 | 
					
						
							|  |  |  |                      yaw_rate_pts)
 | 
					
						
							|  |  |  |     # init state for next iteration
 | 
					
						
							|  |  |  |     # mpc.u_sol is the desired second derivative of psi given x0 curv state.
 | 
					
						
							|  |  |  |     # with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate.
 | 
					
						
							|  |  |  |     # instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control.
 | 
					
						
							|  |  |  |     self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #  Check for infeasible MPC solution
 | 
					
						
							|  |  |  |     mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
 | 
					
						
							|  |  |  |     t = sec_since_boot()
 | 
					
						
							|  |  |  |     if mpc_nans or self.lat_mpc.solution_status != 0:
 | 
					
						
							|  |  |  |       self.reset_mpc()
 | 
					
						
							|  |  |  |       self.x0[3] = measured_curvature * self.v_ego
 | 
					
						
							|  |  |  |       if t > self.last_cloudlog_t + 5.0:
 | 
					
						
							|  |  |  |         self.last_cloudlog_t = t
 | 
					
						
							|  |  |  |         cloudlog.warning("Lateral mpc - nan: True")
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if self.lat_mpc.cost > 20000. or mpc_nans:
 | 
					
						
							|  |  |  |       self.solution_invalid_cnt += 1
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       self.solution_invalid_cnt = 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def publish(self, sm, pm):
 | 
					
						
							|  |  |  |     plan_solution_valid = self.solution_invalid_cnt < 2
 | 
					
						
							|  |  |  |     plan_send = messaging.new_message('lateralPlan')
 | 
					
						
							|  |  |  |     plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     lateralPlan = plan_send.lateralPlan
 | 
					
						
							|  |  |  |     lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
 | 
					
						
							|  |  |  |     lateralPlan.dPathPoints = self.y_pts.tolist()
 | 
					
						
							|  |  |  |     lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
 | 
					
						
							|  |  |  |     lateralPlan.curvatureRates = [float(x/self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
 | 
					
						
							|  |  |  |     lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     lateralPlan.desire = self.DH.desire
 | 
					
						
							|  |  |  |     lateralPlan.useLaneLines = False
 | 
					
						
							|  |  |  |     lateralPlan.laneChangeState = self.DH.lane_change_state
 | 
					
						
							|  |  |  |     lateralPlan.laneChangeDirection = self.DH.lane_change_direction
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     pm.send('lateralPlan', plan_send)
 |