|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | from typing import Dict
 | 
					
						
							|  |  |  | from openpilot.selfdrive.modeld.constants import ModelConstants
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def sigmoid(x):
 | 
					
						
							|  |  |  |   return 1. / (1. + np.exp(-x))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def softmax(x, axis=-1):
 | 
					
						
							|  |  |  |   x -= np.max(x, axis=axis, keepdims=True)
 | 
					
						
							|  |  |  |   if x.dtype == np.float32 or x.dtype == np.float64:
 | 
					
						
							|  |  |  |     np.exp(x, out=x)
 | 
					
						
							|  |  |  |   else:
 | 
					
						
							|  |  |  |     x = np.exp(x)
 | 
					
						
							|  |  |  |   x /= np.sum(x, axis=axis, keepdims=True)
 | 
					
						
							|  |  |  |   return x
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Parser:
 | 
					
						
							|  |  |  |   def __init__(self, ignore_missing=False):
 | 
					
						
							|  |  |  |     self.ignore_missing = ignore_missing
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def check_missing(self, outs, name):
 | 
					
						
							|  |  |  |     if name not in outs and not self.ignore_missing:
 | 
					
						
							|  |  |  |       raise ValueError(f"Missing output {name}")
 | 
					
						
							|  |  |  |     return name not in outs
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def parse_categorical_crossentropy(self, name, outs, out_shape=None):
 | 
					
						
							|  |  |  |     if self.check_missing(outs, name):
 | 
					
						
							|  |  |  |       return
 | 
					
						
							|  |  |  |     raw = outs[name]
 | 
					
						
							|  |  |  |     if out_shape is not None:
 | 
					
						
							|  |  |  |       raw = raw.reshape((raw.shape[0],) + out_shape)
 | 
					
						
							|  |  |  |     outs[name] = softmax(raw, axis=-1)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def parse_binary_crossentropy(self, name, outs):
 | 
					
						
							|  |  |  |     if self.check_missing(outs, name):
 | 
					
						
							|  |  |  |       return
 | 
					
						
							|  |  |  |     raw = outs[name]
 | 
					
						
							|  |  |  |     outs[name] = sigmoid(raw)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None):
 | 
					
						
							|  |  |  |     if self.check_missing(outs, name):
 | 
					
						
							|  |  |  |       return
 | 
					
						
							|  |  |  |     raw = outs[name]
 | 
					
						
							|  |  |  |     raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     pred_mu = raw[:,:,:(raw.shape[2] - out_N)//2]
 | 
					
						
							|  |  |  |     n_values = (raw.shape[2] - out_N)//2
 | 
					
						
							|  |  |  |     pred_mu = raw[:,:,:n_values]
 | 
					
						
							|  |  |  |     pred_std = np.exp(raw[:,:,n_values: 2*n_values])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if in_N > 1:
 | 
					
						
							|  |  |  |       weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
 | 
					
						
							|  |  |  |       for i in range(out_N):
 | 
					
						
							|  |  |  |         weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if out_N == 1:
 | 
					
						
							|  |  |  |         for fidx in range(weights.shape[0]):
 | 
					
						
							|  |  |  |           idxs = np.argsort(weights[fidx][:,0])[::-1]
 | 
					
						
							|  |  |  |           weights[fidx] = weights[fidx][idxs]
 | 
					
						
							|  |  |  |           pred_mu[fidx] = pred_mu[fidx][idxs]
 | 
					
						
							|  |  |  |           pred_std[fidx] = pred_std[fidx][idxs]
 | 
					
						
							|  |  |  |       full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
 | 
					
						
							|  |  |  |       outs[name + '_weights'] = weights
 | 
					
						
							|  |  |  |       outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
 | 
					
						
							|  |  |  |       outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
 | 
					
						
							|  |  |  |       pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
 | 
					
						
							|  |  |  |       for fidx in range(weights.shape[0]):
 | 
					
						
							|  |  |  |         for hidx in range(out_N):
 | 
					
						
							|  |  |  |           idxs = np.argsort(weights[fidx,:,hidx])[::-1]
 | 
					
						
							|  |  |  |           pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
 | 
					
						
							|  |  |  |           pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       pred_mu_final = pred_mu
 | 
					
						
							|  |  |  |       pred_std_final = pred_std
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if out_N > 1:
 | 
					
						
							|  |  |  |       final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       final_shape = tuple([raw.shape[0],] + list(out_shape))
 | 
					
						
							|  |  |  |     outs[name] = pred_mu_final.reshape(final_shape)
 | 
					
						
							|  |  |  |     outs[name + '_stds'] = pred_std_final.reshape(final_shape)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def parse_outputs(self, outs: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
 | 
					
						
							|  |  |  |     self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION,
 | 
					
						
							|  |  |  |                    out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
 | 
					
						
							|  |  |  |     self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
 | 
					
						
							|  |  |  |     self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
 | 
					
						
							|  |  |  |     self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
 | 
					
						
							|  |  |  |     self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
 | 
					
						
							|  |  |  |     self.parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
 | 
					
						
							|  |  |  |     self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
 | 
					
						
							|  |  |  |     self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
 | 
					
						
							|  |  |  |                    out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
 | 
					
						
							|  |  |  |     if 'lat_planner_solution' in outs:
 | 
					
						
							|  |  |  |       self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
 | 
					
						
							|  |  |  |     if 'desired_curvature' in outs:
 | 
					
						
							|  |  |  |       self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
 | 
					
						
							|  |  |  |     for k in ['lead_prob', 'lane_lines_prob', 'meta']:
 | 
					
						
							|  |  |  |       self.parse_binary_crossentropy(k, outs)
 | 
					
						
							|  |  |  |     self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
 | 
					
						
							|  |  |  |     self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
 | 
					
						
							|  |  |  |     return outs
 |