|  |  |  | #!/usr/bin/env python3
 | 
					
						
							|  |  |  | # pylint: skip-file
 | 
					
						
							|  |  |  | # type: ignore
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | import math
 | 
					
						
							|  |  |  | from tqdm import tqdm
 | 
					
						
							|  |  |  | from typing import cast
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import seaborn as sns
 | 
					
						
							|  |  |  | import matplotlib.pyplot as plt
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from selfdrive.car.honda.interface import CarInterface
 | 
					
						
							|  |  |  | from selfdrive.car.honda.values import CAR
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.vehicle_model import VehicleModel, create_dyn_state_matrices
 | 
					
						
							|  |  |  | from selfdrive.locationd.kalman.models.car_kf import CarKalman, ObservationKind, States
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | T_SIM = 5 * 60  # s
 | 
					
						
							|  |  |  | DT = 0.01
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | CP = CarInterface.get_non_essential_params(CAR.CIVIC)
 | 
					
						
							|  |  |  | VM = VehicleModel(CP)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | x, y = 0, 0  # m, m
 | 
					
						
							|  |  |  | psi = math.radians(0)  # rad
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # The state is x = [v, r]^T
 | 
					
						
							|  |  |  | # with v lateral speed [m/s], and r rotational speed [rad/s]
 | 
					
						
							|  |  |  | state = np.array([[0.0], [0.0]])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ts = np.arange(0, T_SIM, DT)
 | 
					
						
							|  |  |  | speeds = 10 * np.sin(2 * np.pi * ts / 200.) + 25
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | angle_offsets = math.radians(1.0) * np.ones_like(ts)
 | 
					
						
							|  |  |  | angle_offsets[ts > 60] = 0
 | 
					
						
							|  |  |  | steering_angles = cast(np.ndarray, np.radians(5 * np.cos(2 * np.pi * ts / 100.)))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | xs = []
 | 
					
						
							|  |  |  | ys = []
 | 
					
						
							|  |  |  | psis = []
 | 
					
						
							|  |  |  | yaw_rates = []
 | 
					
						
							|  |  |  | speed_ys = []
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | kf_states = []
 | 
					
						
							|  |  |  | kf_ps = []
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | kf = CarKalman()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | for i, t in tqdm(list(enumerate(ts))):
 | 
					
						
							|  |  |  |   u = speeds[i]
 | 
					
						
							|  |  |  |   sa = steering_angles[i]
 | 
					
						
							|  |  |  |   ao = angle_offsets[i]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   A, B = create_dyn_state_matrices(u, VM)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   state += DT * (A.dot(state) + B.dot(sa + ao))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   x += u * math.cos(psi) * DT
 | 
					
						
							|  |  |  |   y += (float(state[0]) * math.sin(psi) + u * math.sin(psi)) * DT
 | 
					
						
							|  |  |  |   psi += float(state[1]) * DT
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, [float(state[1])])
 | 
					
						
							|  |  |  |   kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_XY_SPEED, [[u, float(state[0])]])
 | 
					
						
							|  |  |  |   kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, [sa])
 | 
					
						
							|  |  |  |   kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, [0])
 | 
					
						
							|  |  |  |   kf.predict(t)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   speed_ys.append(float(state[0]))
 | 
					
						
							|  |  |  |   yaw_rates.append(float(state[1]))
 | 
					
						
							|  |  |  |   kf_states.append(kf.x.copy())
 | 
					
						
							|  |  |  |   kf_ps.append(kf.P.copy())
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   xs.append(x)
 | 
					
						
							|  |  |  |   ys.append(y)
 | 
					
						
							|  |  |  |   psis.append(psi)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | xs = np.asarray(xs)
 | 
					
						
							|  |  |  | ys = np.asarray(ys)
 | 
					
						
							|  |  |  | psis = np.asarray(psis)
 | 
					
						
							|  |  |  | speed_ys = np.asarray(speed_ys)
 | 
					
						
							|  |  |  | kf_states = np.asarray(kf_states)
 | 
					
						
							|  |  |  | kf_ps = np.asarray(kf_ps)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | palette = sns.color_palette()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def plot_with_bands(ts, state, label, ax, idx=1, converter=None):
 | 
					
						
							|  |  |  |   mean = kf_states[:, state].flatten()
 | 
					
						
							|  |  |  |   stds = np.sqrt(kf_ps[:, state, state].flatten())
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if converter is not None:
 | 
					
						
							|  |  |  |     mean = converter(mean)
 | 
					
						
							|  |  |  |     stds = converter(stds)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   sns.lineplot(ts, mean, label=label, ax=ax)
 | 
					
						
							|  |  |  |   ax.fill_between(ts, mean - stds, mean + stds, alpha=.2, color=palette[idx])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | print(kf.x)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.set_context("paper")
 | 
					
						
							|  |  |  | f, axes = plt.subplots(6, 1)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.lineplot(ts, np.degrees(steering_angles), label='Steering Angle [deg]', ax=axes[0])
 | 
					
						
							|  |  |  | plot_with_bands(ts, States.STEER_ANGLE, 'Steering Angle kf [deg]', axes[0], converter=np.degrees)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.lineplot(ts, np.degrees(yaw_rates), label='Yaw Rate [deg]', ax=axes[1])
 | 
					
						
							|  |  |  | plot_with_bands(ts, States.YAW_RATE, 'Yaw Rate kf [deg]', axes[1], converter=np.degrees)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.lineplot(ts, np.ones_like(ts) * VM.sR, label='Steer ratio [-]', ax=axes[2])
 | 
					
						
							|  |  |  | plot_with_bands(ts, States.STEER_RATIO, 'Steer ratio kf [-]', axes[2])
 | 
					
						
							|  |  |  | axes[2].set_ylim([10, 20])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.lineplot(ts, np.ones_like(ts), label='Tire stiffness[-]', ax=axes[3])
 | 
					
						
							|  |  |  | plot_with_bands(ts, States.STIFFNESS, 'Tire stiffness kf [-]', axes[3])
 | 
					
						
							|  |  |  | axes[3].set_ylim([0.8, 1.2])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.lineplot(ts, np.degrees(angle_offsets), label='Angle offset [deg]', ax=axes[4])
 | 
					
						
							|  |  |  | plot_with_bands(ts, States.ANGLE_OFFSET, 'Angle offset kf deg', axes[4], converter=np.degrees)
 | 
					
						
							|  |  |  | plot_with_bands(ts, States.ANGLE_OFFSET_FAST, 'Fast Angle offset kf deg', axes[4], converter=np.degrees, idx=2)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | axes[4].set_ylim([-2, 2])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sns.lineplot(ts, speeds, ax=axes[5])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | plt.show()
 |