|  |  |  | import math
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from cereal import log
 | 
					
						
							|  |  |  | from common.numpy_fast import interp
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.latcontrol import LatControl
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.pid import PIDController
 | 
					
						
							|  |  |  | from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # At higher speeds (25+mph) we can assume:
 | 
					
						
							|  |  |  | # Lateral acceleration achieved by a specific car correlates to
 | 
					
						
							|  |  |  | # torque applied to the steering rack. It does not correlate to
 | 
					
						
							|  |  |  | # wheel slip, or to speed.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # This controller applies torque to achieve desired lateral
 | 
					
						
							|  |  |  | # accelerations. To compensate for the low speed effects we
 | 
					
						
							|  |  |  | # use a LOW_SPEED_FACTOR in the error. Additionally, there is
 | 
					
						
							|  |  |  | # friction in the steering wheel that needs to be overcome to
 | 
					
						
							|  |  |  | # move it at all, this is compensated for too.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | LOW_SPEED_X = [0, 10, 20, 30]
 | 
					
						
							|  |  |  | LOW_SPEED_Y = [15, 13, 10, 5]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class LatControlTorque(LatControl):
 | 
					
						
							|  |  |  |   def __init__(self, CP, CI):
 | 
					
						
							|  |  |  |     super().__init__(CP, CI)
 | 
					
						
							|  |  |  |     self.torque_params = CP.lateralTuning.torque
 | 
					
						
							|  |  |  |     self.pid = PIDController(self.torque_params.kp, self.torque_params.ki,
 | 
					
						
							|  |  |  |                              k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
 | 
					
						
							|  |  |  |     self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
 | 
					
						
							|  |  |  |     self.use_steering_angle = self.torque_params.useSteeringAngle
 | 
					
						
							|  |  |  |     self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
 | 
					
						
							|  |  |  |     self.torque_params.latAccelFactor = latAccelFactor
 | 
					
						
							|  |  |  |     self.torque_params.latAccelOffset = latAccelOffset
 | 
					
						
							|  |  |  |     self.torque_params.friction = friction
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, active, CS, VM, params, last_actuators, steer_limited, desired_curvature, desired_curvature_rate, llk):
 | 
					
						
							|  |  |  |     pid_log = log.ControlsState.LateralTorqueState.new_message()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if not active:
 | 
					
						
							|  |  |  |       output_torque = 0.0
 | 
					
						
							|  |  |  |       pid_log.active = False
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |       if self.use_steering_angle:
 | 
					
						
							|  |  |  |         actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
 | 
					
						
							|  |  |  |         curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
 | 
					
						
							|  |  |  |       else:
 | 
					
						
							|  |  |  |         actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
 | 
					
						
							|  |  |  |         actual_curvature_llk = llk.angularVelocityCalibrated.value[2] / CS.vEgo
 | 
					
						
							|  |  |  |         actual_curvature = interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_llk])
 | 
					
						
							|  |  |  |         curvature_deadzone = 0.0
 | 
					
						
							|  |  |  |       desired_lateral_accel = desired_curvature * CS.vEgo ** 2
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       # desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
 | 
					
						
							| 
									
										
											  
											
												Live torque (#25456)
* wip torqued
* add basic logic
* setup in manager
* check sanity and publish msg
* add first order filter to outputs
* wire up controlsd, and update gains
* rename intercept to offset
* add cloudlog, live values are not updated
* fix bugs, do not reset points for now
* fix crashes
* rename to main
* fix bugs, works offline
* fix float in cereal bug
* add latacc filter
* randomly choose points, approx for iid
* add variable decay
* local param to capnp instead of dict
* verify works in replay
* use torqued output in controlsd
* use in controlsd; use points from past routes
* controlsd bugfix
* filter before updating gains, needs to be replaced
* save all points to ensure smooth transition across routes, revert friction factor to 1.5
* add filters to prevent noisy low-speed data points; improve fit sanity
* add engaged buffer
* revert lat_acc thresh
* use paramsd realtime process config
* make latacc-to-torque generic, and overrideable
* move freq to 4Hz, avoid storing in np.array, don't publish points in the message
* float instead of np
* remove constant while storing pts
* rename slope, offset to lat_accet_factor, offset
* resolve issues
* use camelcase in all capnp params
* use camelcase everywhere
* reduce latacc threshold or sanity, add car_sane todo, save points properly
* add and check tag
* write param to disk at end of route
* remove args
* rebase op, cereal
* save on exit
* restore default handler
* cpu usage check
* add to process replay
* handle reset better, reduce unnecessary computation
* always publish raw values - useful for debug
* regen routes
* update refs
* checks on cache restore
* check tuning vals too
* clean that up
* reduce cpu usage
* reduce cpu usage by 75%
* cleanup
* optimize further
* handle reset condition better, don't put points in init, use only in corolla
* bump cereal after rebasing
* update refs
* Update common/params.cc
Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com>
* remove unnecessary checks
* Update RELEASES.md
Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com>
											
										 
											3 years ago
										 |  |  |       # desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
 | 
					
						
							|  |  |  |       actual_lateral_accel = actual_curvature * CS.vEgo ** 2
 | 
					
						
							|  |  |  |       lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       low_speed_factor = interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
 | 
					
						
							|  |  |  |       setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
 | 
					
						
							|  |  |  |       measurement = actual_lateral_accel + low_speed_factor * actual_curvature
 | 
					
						
							|  |  |  |       gravity_adjusted_lateral_accel = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY
 | 
					
						
							|  |  |  |       torque_from_setpoint = self.torque_from_lateral_accel(setpoint, self.torque_params, setpoint,
 | 
					
						
							|  |  |  |                                                      lateral_accel_deadzone, friction_compensation=False)
 | 
					
						
							|  |  |  |       torque_from_measurement = self.torque_from_lateral_accel(measurement, self.torque_params, measurement,
 | 
					
						
							|  |  |  |                                                      lateral_accel_deadzone, friction_compensation=False)
 | 
					
						
							|  |  |  |       pid_log.error = torque_from_setpoint - torque_from_measurement
 | 
					
						
							|  |  |  |       ff = self.torque_from_lateral_accel(gravity_adjusted_lateral_accel, self.torque_params,
 | 
					
						
							|  |  |  |                                           desired_lateral_accel - actual_lateral_accel,
 | 
					
						
							|  |  |  |                                           lateral_accel_deadzone, friction_compensation=True)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       freeze_integrator = steer_limited or CS.steeringPressed or CS.vEgo < 5
 | 
					
						
							|  |  |  |       output_torque = self.pid.update(pid_log.error,
 | 
					
						
							|  |  |  |                                       feedforward=ff,
 | 
					
						
							|  |  |  |                                       speed=CS.vEgo,
 | 
					
						
							|  |  |  |                                       freeze_integrator=freeze_integrator)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       pid_log.active = True
 | 
					
						
							|  |  |  |       pid_log.p = self.pid.p
 | 
					
						
							|  |  |  |       pid_log.i = self.pid.i
 | 
					
						
							|  |  |  |       pid_log.d = self.pid.d
 | 
					
						
							|  |  |  |       pid_log.f = self.pid.f
 | 
					
						
							|  |  |  |       pid_log.output = -output_torque
 | 
					
						
							|  |  |  |       pid_log.actualLateralAccel = actual_lateral_accel
 | 
					
						
							|  |  |  |       pid_log.desiredLateralAccel = desired_lateral_accel
 | 
					
						
							|  |  |  |       pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # TODO left is positive in this convention
 | 
					
						
							|  |  |  |     return -output_torque, 0.0, pid_log
 |