open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

560 lines
23 KiB

#!/usr/bin/env python3
import os
import numpy as np
import sympy as sp
from laika.constants import EARTH_GM
from laika.raw_gnss import GNSSMeasurement
from selfdrive.locationd.kalman.helpers import ObservationKind
from selfdrive.locationd.kalman.helpers.ekf_sym import EKF_sym, gen_code
from selfdrive.locationd.kalman.helpers.lst_sq_computer import LstSqComputer
from selfdrive.locationd.kalman.helpers.sympy_helpers import (euler_rotate,
quat_matrix_r,
quat_rotate)
def parse_prr(m):
sat_pos_vel_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
m[GNSSMeasurement.SAT_VEL]))
R_i = np.atleast_2d(m[GNSSMeasurement.PRR_STD]**2)
z_i = m[GNSSMeasurement.PRR]
return z_i, R_i, sat_pos_vel_i
def parse_pr(m):
pseudorange = m[GNSSMeasurement.PR]
pseudorange_stdev = m[GNSSMeasurement.PR_STD]
sat_pos_freq_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
np.array([m[GNSSMeasurement.GLONASS_FREQ]])))
z_i = np.atleast_1d(pseudorange)
R_i = np.atleast_2d(pseudorange_stdev**2)
return z_i, R_i, sat_pos_freq_i
class States():
ECEF_POS = slice(0,3) # x, y and z in ECEF in meters
ECEF_ORIENTATION = slice(3,7) # quat for pose of phone in ecef
ECEF_VELOCITY = slice(7,10) # ecef velocity in m/s
ANGULAR_VELOCITY = slice(10, 13) # roll, pitch and yaw rates in device frame in radians/s
CLOCK_BIAS = slice(13, 14) # clock bias in light-meters,
CLOCK_DRIFT = slice(14, 15) # clock drift in light-meters/s,
GYRO_BIAS = slice(15, 18) # roll, pitch and yaw biases
ODO_SCALE = slice(18, 19) # odometer scale
ACCELERATION = slice(19, 22) # Acceleration in device frame in m/s**2
FOCAL_SCALE = slice(22, 23) # focal length scale
IMU_OFFSET = slice(23,26) # imu offset angles in radians
GLONASS_BIAS = slice(26,27) # GLONASS bias in m expressed as bias + freq_num*freq_slope
GLONASS_FREQ_SLOPE = slice(27, 28) # GLONASS bias in m expressed as bias + freq_num*freq_slope
CLOCK_ACCELERATION = slice(28, 29) # clock acceleration in light-meters/s**2,
class LocKalman():
name = "loc"
x_initial = np.array([-2.7e6, 4.2e6, 3.8e6,
1, 0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0,
0, 0, 0,
1,
0, 0, 0,
1,
0, 0, 0,
0, 0,
0])
# state covariance
P_initial = np.diag([10000**2, 10000**2, 10000**2,
10**2, 10**2, 10**2,
10**2, 10**2, 10**2,
1**2, 1**2, 1**2,
(200000)**2, (100)**2,
0.05**2, 0.05**2, 0.05**2,
0.02**2,
1**2, 1**2, 1**2,
0.01**2,
(0.01)**2, (0.01)**2, (0.01)**2,
10**2, 1**2,
0.05**2])
# process noise
Q = np.diag([0.03**2, 0.03**2, 0.03**2,
0.0**2, 0.0**2, 0.0**2,
0.0**2, 0.0**2, 0.0**2,
0.1**2, 0.1**2, 0.1**2,
(.1)**2, (0.0)**2,
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
(0.02/100)**2,
3**2, 3**2, 3**2,
0.001**2,
(0.05/60)**2, (0.05/60)**2, (0.05/60)**2,
(.1)**2, (.01)**2,
0.005**2])
maha_test_kinds = [ObservationKind.ORB_FEATURES] #, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE]
dim_augment = 7
dim_augment_err = 6
@staticmethod
def generate_code(N=4):
dim_augment = LocKalman.dim_augment
dim_augment_err = LocKalman.dim_augment_err
dim_main = LocKalman.x_initial.shape[0]
dim_main_err = LocKalman.P_initial.shape[0]
dim_state = dim_main + dim_augment * N
dim_state_err = dim_main_err + dim_augment_err * N
maha_test_kinds = LocKalman.maha_test_kinds
name = f"{LocKalman.name}_{N}"
# make functions and jacobians with sympy
# state variables
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
x,y,z = state[0:3,:]
q = state[3:7,:]
v = state[7:10,:]
vx, vy, vz = v
omega = state[10:13,:]
vroll, vpitch, vyaw = omega
cb, cd = state[13:15,:]
roll_bias, pitch_bias, yaw_bias = state[15:18,:]
odo_scale = state[18,:]
acceleration = state[19:22,:]
focal_scale = state[22,:]
imu_angles= state[23:26,:]
glonass_bias, glonass_freq_slope = state[26:28,:]
ca = state[28,0]
dt = sp.Symbol('dt')
# calibration and attitude rotation matrices
quat_rot = quat_rotate(*q)
# Got the quat predict equations from here
# A New Quaternion-Based Kalman Filter for
# Real-Time Attitude Estimation Using the Two-Step
# Geometrically-Intuitive Correction Algorithm
A = 0.5*sp.Matrix([[0, -vroll, -vpitch, -vyaw],
[vroll, 0, vyaw, -vpitch],
[vpitch, -vyaw, 0, vroll],
[vyaw, vpitch, -vroll, 0]])
q_dot = A * q
# Time derivative of the state as a function of state
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[:3,:] = v
state_dot[3:7,:] = q_dot
state_dot[7:10,0] = quat_rot * acceleration
state_dot[13,0] = cd
state_dot[14,0] = ca
# Basic descretization, 1st order intergrator
# Can be pretty bad if dt is big
f_sym = state + dt*state_dot
state_err_sym = sp.MatrixSymbol('state_err',dim_state_err,1)
state_err = sp.Matrix(state_err_sym)
quat_err = state_err[3:6,:]
v_err = state_err[6:9,:]
omega_err = state_err[9:12,:]
cd_err = state_err[13,:]
acceleration_err = state_err[18:21,:]
ca_err = state_err[27,:]
# Time derivative of the state error as a function of state error and state
quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
state_err_dot[:3,:] = v_err
state_err_dot[3:6,:] = q_err_dot
state_err_dot[6:9,:] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
state_err_dot[12,:] = cd_err
state_err_dot[13,:] = ca_err
f_err_sym = state_err + dt*state_err_dot
# convenient indexing
# q idxs are for quats and p idxs are for other
q_idxs = [[3, dim_augment]] + [[dim_main + n*dim_augment + 3, dim_main + (n+1)*dim_augment] for n in range(N)]
q_err_idxs = [[3, dim_augment_err]] + [[dim_main_err + n*dim_augment_err + 3, dim_main_err + (n+1)*dim_augment_err] for n in range(N)]
p_idxs = [[0, 3]] + [[dim_augment, dim_main]] + [[dim_main + n*dim_augment , dim_main + n*dim_augment + 3] for n in range(N)]
p_err_idxs = [[0, 3]] + [[dim_augment_err, dim_main_err]] + [[dim_main_err + n*dim_augment_err, dim_main_err + n*dim_augment_err + 3] for n in range(N)]
# Observation matrix modifier
H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
H_mod_sym[p_idx[0]:p_idx[1],p_err_idx[0]:p_err_idx[1]] = np.eye(p_idx[1]-p_idx[0])
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
H_mod_sym[q_idx[0]:q_idx[1],q_err_idx[0]:q_err_idx[1]] = 0.5*quat_matrix_r(state[q_idx[0]:q_idx[1]])[:,1:]
# these error functions are defined so that say there
# is a nominal x and true x:
# true x = err_function(nominal x, delta x)
# delta x = inv_err_function(nominal x, true x)
nom_x = sp.MatrixSymbol('nom_x',dim_state,1)
true_x = sp.MatrixSymbol('true_x',dim_state,1)
delta_x = sp.MatrixSymbol('delta_x',dim_state_err,1)
err_function_sym = sp.Matrix(np.zeros((dim_state,1)))
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
delta_quat = sp.Matrix(np.ones((4)))
delta_quat[1:,:] = sp.Matrix(0.5*delta_x[q_err_idx[0]: q_err_idx[1],:])
err_function_sym[q_idx[0]:q_idx[1],0] = quat_matrix_r(nom_x[q_idx[0]:q_idx[1],0])*delta_quat
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
err_function_sym[p_idx[0]:p_idx[1],:] = sp.Matrix(nom_x[p_idx[0]:p_idx[1],:] + delta_x[p_err_idx[0]:p_err_idx[1],:])
inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err,1)))
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
inv_err_function_sym[p_err_idx[0]:p_err_idx[1],0] = sp.Matrix(-nom_x[p_idx[0]:p_idx[1],0] + true_x[p_idx[0]:p_idx[1],0])
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
delta_quat = quat_matrix_r(nom_x[q_idx[0]:q_idx[1],0]).T*true_x[q_idx[0]:q_idx[1],0]
inv_err_function_sym[q_err_idx[0]:q_err_idx[1],0] = sp.Matrix(2*delta_quat[1:])
eskf_params = [[err_function_sym, nom_x, delta_x],
[inv_err_function_sym, nom_x, true_x],
H_mod_sym, f_err_sym, state_err_sym]
#
# Observation functions
#
# extra args
sat_pos_freq_sym = sp.MatrixSymbol('sat_pos', 4, 1)
sat_pos_vel_sym = sp.MatrixSymbol('sat_pos_vel', 6, 1)
sat_los_sym = sp.MatrixSymbol('sat_los', 3, 1)
orb_epos_sym = sp.MatrixSymbol('orb_epos_sym', 3, 1)
# expand extra args
sat_x, sat_y, sat_z, glonass_freq = sat_pos_freq_sym
sat_vx, sat_vy, sat_vz = sat_pos_vel_sym[3:]
los_x, los_y, los_z = sat_los_sym
orb_x, orb_y, orb_z = orb_epos_sym
h_pseudorange_sym = sp.Matrix([sp.sqrt(
(x - sat_x)**2 +
(y - sat_y)**2 +
(z - sat_z)**2) +
cb])
h_pseudorange_glonass_sym = sp.Matrix([sp.sqrt(
(x - sat_x)**2 +
(y - sat_y)**2 +
(z - sat_z)**2) +
cb + glonass_bias + glonass_freq_slope*glonass_freq])
los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z]))
los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2)
h_pseudorange_rate_sym = sp.Matrix([los_vector[0]*(sat_vx - vx) +
los_vector[1]*(sat_vy - vy) +
los_vector[2]*(sat_vz - vz) +
cd])
imu_rot = euler_rotate(*imu_angles)
h_gyro_sym = imu_rot*sp.Matrix([vroll + roll_bias,
vpitch + pitch_bias,
vyaw + yaw_bias])
pos = sp.Matrix([x, y, z])
gravity = quat_rot.T * ((EARTH_GM/((x**2 + y**2 + z**2)**(3.0/2.0)))*pos)
h_acc_sym = imu_rot*(gravity + acceleration)
h_phone_rot_sym = sp.Matrix([vroll,
vpitch,
vyaw])
speed = vx**2 + vy**2 + vz**2
h_speed_sym = sp.Matrix([sp.sqrt(speed)*odo_scale])
# orb stuff
orb_pos_sym = sp.Matrix([orb_x - x, orb_y - y, orb_z - z])
orb_pos_rot_sym = quat_rot.T * orb_pos_sym
s = orb_pos_rot_sym[0]
h_orb_point_sym = sp.Matrix([(1/s)*(orb_pos_rot_sym[1]),
(1/s)*(orb_pos_rot_sym[2])])
h_pos_sym = sp.Matrix([x, y, z])
h_imu_frame_sym = sp.Matrix(imu_angles)
h_relative_motion = sp.Matrix(quat_rot.T * v)
obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
[h_gyro_sym, ObservationKind.PHONE_GYRO, None],
[h_phone_rot_sym, ObservationKind.NO_ROT, None],
[h_acc_sym, ObservationKind.PHONE_ACCEL, None],
[h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym],
[h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym],
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym],
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym],
[h_pos_sym, ObservationKind.ECEF_POS, None],
[h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
[h_imu_frame_sym, ObservationKind.IMU_FRAME, None],
[h_orb_point_sym, ObservationKind.ORB_POINT, orb_epos_sym]]
# MSCKF configuration
if N > 0:
focal_scale =1
# Add observation functions for orb feature tracks
track_epos_sym = sp.MatrixSymbol('track_epos_sym', 3, 1)
track_x, track_y, track_z = track_epos_sym
h_track_sym = sp.Matrix(np.zeros(((1 + N)*2, 1)))
track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
track_pos_rot_sym = quat_rot.T * track_pos_sym
h_track_sym[-2:,:] = sp.Matrix([focal_scale*(track_pos_rot_sym[1]/track_pos_rot_sym[0]),
focal_scale*(track_pos_rot_sym[2]/track_pos_rot_sym[0])])
h_msckf_test_sym = sp.Matrix(np.zeros(((1 + N)*3, 1)))
h_msckf_test_sym[-3:,:] = sp.Matrix([track_x - x,track_y - y , track_z - z])
for n in range(N):
idx = dim_main + n*dim_augment
err_idx = dim_main_err + n*dim_augment_err
x, y, z = state[idx:idx+3]
q = state[idx+3:idx+7]
quat_rot = quat_rotate(*q)
track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
track_pos_rot_sym = quat_rot.T * track_pos_sym
h_track_sym[n*2:n*2+2,:] = sp.Matrix([focal_scale*(track_pos_rot_sym[1]/track_pos_rot_sym[0]),
focal_scale*(track_pos_rot_sym[2]/track_pos_rot_sym[0])])
h_msckf_test_sym[n*3:n*3+3,:] = sp.Matrix([track_x - x, track_y - y, track_z - z])
obs_eqs.append([h_msckf_test_sym, ObservationKind.MSCKF_TEST, track_epos_sym])
obs_eqs.append([h_track_sym, ObservationKind.ORB_FEATURES, track_epos_sym])
obs_eqs.append([h_track_sym, ObservationKind.FEATURE_TRACK_TEST, track_epos_sym])
msckf_params = [dim_main, dim_augment, dim_main_err, dim_augment_err, N, [ObservationKind.MSCKF_TEST, ObservationKind.ORB_FEATURES]]
else:
msckf_params = None
gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params, msckf_params, maha_test_kinds)
def __init__(self, N=4, max_tracks=3000):
name = f"{self.name}_{N}"
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]),
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]),
ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])}
# MSCKF stuff
self.N = N
self.dim_main = LocKalman.x_initial.shape[0]
self.dim_main_err = LocKalman.P_initial.shape[0]
self.dim_state = self.dim_main + self.dim_augment*self.N
self.dim_state_err = self.dim_main_err + self.dim_augment_err*self.N
if self.N > 0:
x_initial, P_initial, Q = self.pad_augmented(self.x_initial, self.P_initial, self.Q)
self.computer = LstSqComputer(N)
self.max_tracks = max_tracks
# init filter
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_main, self.dim_main_err,
N, self.dim_augment, self.dim_augment_err, self.maha_test_kinds)
@property
def x(self):
return self.filter.state()
@property
def t(self):
return self.filter.filter_time
@property
def P(self):
return self.filter.covs()
def predict(self, t):
return self.filter.predict(t)
def rts_smooth(self, estimates):
return self.filter.rts_smooth(estimates, norm_quats=True)
def pad_augmented(self, x, P, Q=None):
if x.shape[0] == self.dim_main and self.N > 0:
x = np.pad(x, (0, self.N*self.dim_augment), mode='constant')
x[self.dim_main+3::7] = 1
if P.shape[0] == self.dim_main_err and self.N > 0:
P = np.pad(P, [(0, self.N*self.dim_augment_err), (0, self.N*self.dim_augment_err)], mode='constant')
P[self.dim_main_err:, self.dim_main_err:] = 10e20*np.eye(self.dim_augment_err *self.N)
if Q is None:
return x, P
else:
Q = np.pad(Q, [(0, self.N*self.dim_augment_err), (0, self.N*self.dim_augment_err)], mode='constant')
return x, P, Q
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
if covs_diag is not None:
P = np.diag(covs_diag)
elif covs is not None:
P = covs
else:
P = self.filter.covs()
state, P = self.pad_augmented(state, P)
self.filter.init_state(state, P, filter_time)
def predict_and_observe(self, t, kind, data):
if len(data) > 0:
data = np.atleast_2d(data)
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
r = self.predict_and_update_odo_trans(data, t, kind)
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
r = self.predict_and_update_odo_rot(data, t, kind)
elif kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
r = self.predict_and_update_pseudorange(data, t, kind)
elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
r = self.predict_and_update_pseudorange_rate(data, t, kind)
elif kind == ObservationKind.ORB_POINT:
r = self.predict_and_update_orb(data, t, kind)
elif kind == ObservationKind.ORB_FEATURES:
r = self.predict_and_update_orb_features(data, t, kind)
elif kind == ObservationKind.MSCKF_TEST:
r = self.predict_and_update_msckf_test(data, t, kind)
elif kind == ObservationKind.FEATURE_TRACK_TEST:
r = self.predict_and_update_feature_track_test(data, t, kind)
elif kind == ObservationKind.ODOMETRIC_SPEED:
r = self.predict_and_update_odo_speed(data, t, kind)
else:
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
# Normalize quats
quat_norm = np.linalg.norm(self.filter.x[3:7,0])
# Should not continue if the quats behave this weirdly
if not 0.1 < quat_norm < 10:
raise RuntimeError("Sir! The filter's gone all wobbly!")
self.filter.x[3:7,0] = self.filter.x[3:7,0]/quat_norm
for i in range(self.N):
d1 = self.dim_main
d3 = self.dim_augment
self.filter.x[d1+d3*i+3:d1+d3*i+7] /= np.linalg.norm(self.filter.x[d1+i*d3 + 3:d1+i*d3 + 7,0])
return r
def get_R(self, kind, n):
obs_noise = self.obs_noise[kind]
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i,:,:] = obs_noise
return R
def predict_and_update_pseudorange(self, meas, t, kind):
R = np.zeros((len(meas), 1, 1))
sat_pos_freq = np.zeros((len(meas), 4))
z = np.zeros((len(meas), 1))
for i, m in enumerate(meas):
z_i, R_i, sat_pos_freq_i = parse_pr(m)
sat_pos_freq[i,:] = sat_pos_freq_i
z[i,:] = z_i
R[i,:,:] = R_i
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
def predict_and_update_pseudorange_rate(self, meas, t, kind):
R = np.zeros((len(meas), 1, 1))
z = np.zeros((len(meas), 1))
sat_pos_vel = np.zeros((len(meas), 6))
for i, m in enumerate(meas):
z_i, R_i, sat_pos_vel_i = parse_prr(m)
sat_pos_vel[i] = sat_pos_vel_i
R[i,:,:] = R_i
z[i, :] = z_i
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
def predict_and_update_orb(self, orb, t, kind):
true_pos = orb[:,2:]
z = orb[:,:2]
R = np.zeros((len(orb), 2, 2))
for i, _ in enumerate(z):
R[i,:,:] = np.diag([10**2, 10**2])
return self.filter.predict_and_update_batch(t, kind, z, R, true_pos)
def predict_and_update_odo_speed(self, speed, t, kind):
z = np.array(speed)
R = np.zeros((len(speed), 1, 1))
for i, _ in enumerate(z):
R[i,:,:] = np.diag([0.2**2])
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_trans(self, trans, t, kind):
z = trans[:,:3]
R = np.zeros((len(trans), 3, 3))
for i, _ in enumerate(z):
R[i,:,:] = np.diag(trans[i,3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_rot(self, rot, t, kind):
z = rot[:,:3]
R = np.zeros((len(rot), 3, 3))
for i, _ in enumerate(z):
R[i,:,:] = np.diag(rot[i,3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_orb_features(self, tracks, t, kind):
k = 2*(self.N+1)
R = np.zeros((len(tracks), k, k))
z = np.zeros((len(tracks), k))
ecef_pos = np.zeros((len(tracks), 3))
ecef_pos[:] = np.nan
poses = self.x[self.dim_main:].reshape((-1,7))
times = tracks.reshape((len(tracks),self.N+1, 4))[:,:,0]
good_counter = 0
if times.any() and np.allclose(times[0,:-1], self.filter.augment_times, rtol=1e-6):
for i, track in enumerate(tracks):
img_positions = track.reshape((self.N+1, 4))[:,2:]
# TODO not perfect as last pose not used
#img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i])
ecef_pos[i] = self.computer.compute_pos(poses, img_positions[:-1])
z[i] = img_positions.flatten()
R[i,:,:] = np.diag([0.005**2]*(k))
if np.isfinite(ecef_pos[i][0]):
good_counter += 1
if good_counter > self.max_tracks:
break
good_idxs = np.all(np.isfinite(ecef_pos),axis=1)
# have to do some weird stuff here to keep
# to have the observations input from mesh3d
# consistent with the outputs of the filter
# Probably should be replaced, not sure how.
ret = self.filter.predict_and_update_batch(t, kind, z[good_idxs], R[good_idxs], ecef_pos[good_idxs], augment=True)
if ret is None:
return
y_full = np.zeros((z.shape[0], z.shape[1] - 3))
#print sum(good_idxs), len(tracks)
if sum(good_idxs) > 0:
y_full[good_idxs] = np.array(ret[6])
ret = ret[:6] + (y_full, z, ecef_pos)
return ret
def predict_and_update_msckf_test(self, test_data, t, kind):
assert self.N > 0
z = test_data
R = np.zeros((len(test_data), len(z[0]), len(z[0])))
ecef_pos = [self.x[:3]]
for i, _ in enumerate(z):
R[i,:,:] = np.diag([0.1**2]*len(z[0]))
ret = self.filter.predict_and_update_batch(t, kind, z, R, ecef_pos)
self.filter.augment()
return ret
def maha_test_pseudorange(self, x, P, meas, kind, maha_thresh=.3):
bools = []
for i, m in enumerate(meas):
z, R, sat_pos_freq = parse_pr(m)
bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_freq, maha_thresh=maha_thresh))
return np.array(bools)
def maha_test_pseudorange_rate(self, x, P, meas, kind, maha_thresh=.999):
bools = []
for i, m in enumerate(meas):
z, R, sat_pos_vel = parse_prr(m)
bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_vel, maha_thresh=maha_thresh))
return np.array(bools)
if __name__ == "__main__":
LocKalman.generate_code(N=4)