open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

115 lines
3.6 KiB

import numpy as np
from common.transformations.camera import eon_focal_length, \
vp_from_ke, \
get_view_frame_from_road_frame, \
FULL_FRAME_SIZE
# segnet
SEGNET_SIZE = (512, 384)
segnet_frame_from_camera_frame = np.array([
[float(SEGNET_SIZE[0])/FULL_FRAME_SIZE[0], 0., ],
[ 0., float(SEGNET_SIZE[1])/FULL_FRAME_SIZE[1]]])
# model
MODEL_INPUT_SIZE = (320, 160)
MODEL_YUV_SIZE = (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1] * 3 // 2)
MODEL_CX = MODEL_INPUT_SIZE[0]/2.
MODEL_CY = 21.
model_zoom = 1.25
model_height = 1.22
# canonical model transform
model_intrinsics = np.array(
[[ eon_focal_length / model_zoom, 0. , MODEL_CX],
[ 0. , eon_focal_length / model_zoom, MODEL_CY],
[ 0. , 0. , 1.]])
# BIG model
BIGMODEL_INPUT_SIZE = (864, 288)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_zoom = 1.
bigmodel_intrinsics = np.array(
[[ eon_focal_length / bigmodel_zoom, 0. , 0.5 * BIGMODEL_INPUT_SIZE[0]],
[ 0. , eon_focal_length / bigmodel_zoom, 0.2 * BIGMODEL_INPUT_SIZE[1]],
[ 0. , 0. , 1.]])
bigmodel_border = np.array([
[0,0,1],
[BIGMODEL_INPUT_SIZE[0], 0, 1],
[BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1], 1],
[0, BIGMODEL_INPUT_SIZE[1], 1],
])
model_frame_from_road_frame = np.dot(model_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
bigmodel_frame_from_road_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
model_frame_from_bigmodel_frame = np.dot(model_intrinsics, np.linalg.inv(bigmodel_intrinsics))
# 'camera from model camera'
def get_model_height_transform(camera_frame_from_road_frame, height):
camera_frame_from_road_ground = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 1],
]))
camera_frame_from_road_high = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, height - model_height],
[0, 0, 1],
]))
ground_from_camera_frame = np.linalg.inv(camera_frame_from_road_ground)
low_camera_from_high_camera = np.dot(camera_frame_from_road_high, ground_from_camera_frame)
high_camera_from_low_camera = np.linalg.inv(low_camera_from_high_camera)
return high_camera_from_low_camera
# camera_frame_from_model_frame aka 'warp matrix'
# was: calibration.h/CalibrationTransform
def get_camera_frame_from_model_frame(camera_frame_from_road_frame, height):
vp = vp_from_ke(camera_frame_from_road_frame)
model_camera_from_model_frame = np.array([
[model_zoom, 0., vp[0] - MODEL_CX * model_zoom],
[ 0., model_zoom, vp[1] - MODEL_CY * model_zoom],
[ 0., 0., 1.],
])
# This function is super slow, so skip it if height is very close to canonical
# TODO: speed it up!
if abs(height - model_height) > 0.001: #
camera_from_model_camera = get_model_height_transform(camera_frame_from_road_frame, height)
else:
camera_from_model_camera = np.eye(3)
return np.dot(camera_from_model_camera, model_camera_from_model_frame)
def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
bigmodel_frame_from_ground = bigmodel_frame_from_road_frame[:, (0, 1, 3)]
ground_from_bigmodel_frame = np.linalg.inv(bigmodel_frame_from_ground)
camera_frame_from_bigmodel_frame = np.dot(camera_frame_from_ground, ground_from_bigmodel_frame)
return camera_frame_from_bigmodel_frame