|  |  |  | #
 | 
					
						
							|  |  |  | # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 | 
					
						
							|  |  |  | # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 | 
					
						
							|  |  |  | # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 | 
					
						
							|  |  |  | # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | # This file is part of acados.
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | # The 2-Clause BSD License
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | # Redistribution and use in source and binary forms, with or without
 | 
					
						
							|  |  |  | # modification, are permitted provided that the following conditions are met:
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | # 1. Redistributions of source code must retain the above copyright notice,
 | 
					
						
							|  |  |  | # this list of conditions and the following disclaimer.
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | # 2. Redistributions in binary form must reproduce the above copyright notice,
 | 
					
						
							|  |  |  | # this list of conditions and the following disclaimer in the documentation
 | 
					
						
							|  |  |  | # and/or other materials provided with the distribution.
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
					
						
							|  |  |  | # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
					
						
							|  |  |  | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
					
						
							|  |  |  | # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | 
					
						
							|  |  |  | # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
					
						
							|  |  |  | # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
					
						
							|  |  |  | # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
					
						
							|  |  |  | # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
					
						
							|  |  |  | # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
					
						
							|  |  |  | # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
					
						
							|  |  |  | # POSSIBILITY OF SUCH DAMAGE.;
 | 
					
						
							|  |  |  | #
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import os, sys, json
 | 
					
						
							|  |  |  | import urllib.request
 | 
					
						
							|  |  |  | import shutil
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | from casadi import SX, MX, DM, Function, CasadiMeta
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ALLOWED_CASADI_VERSIONS = ('3.5.5', '3.5.4', '3.5.3', '3.5.2', '3.5.1', '3.4.5', '3.4.0')
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | TERA_VERSION = "0.0.34"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_acados_path():
 | 
					
						
							|  |  |  |     ACADOS_PATH = os.environ.get('ACADOS_SOURCE_DIR')
 | 
					
						
							|  |  |  |     if not ACADOS_PATH:
 | 
					
						
							|  |  |  |         acados_template_path = os.path.dirname(os.path.abspath(__file__))
 | 
					
						
							|  |  |  |         acados_path = os.path.join(acados_template_path, '../../../')
 | 
					
						
							|  |  |  |         ACADOS_PATH = os.path.realpath(acados_path)
 | 
					
						
							|  |  |  |         msg = 'Warning: Did not find environment variable ACADOS_SOURCE_DIR, '
 | 
					
						
							|  |  |  |         msg += 'guessed ACADOS_PATH to be {}.\n'.format(ACADOS_PATH)
 | 
					
						
							|  |  |  |         msg += 'Please export ACADOS_SOURCE_DIR to not avoid this warning.'
 | 
					
						
							|  |  |  |         print(msg)
 | 
					
						
							|  |  |  |     return ACADOS_PATH
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_tera_exec_path():
 | 
					
						
							|  |  |  |     TERA_PATH = os.environ.get('TERA_PATH')
 | 
					
						
							|  |  |  |     if not TERA_PATH:
 | 
					
						
							|  |  |  |         TERA_PATH = os.path.join(get_acados_path(), 'bin/t_renderer')
 | 
					
						
							|  |  |  |     return TERA_PATH
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | platform2tera = {
 | 
					
						
							|  |  |  |     "linux": "linux",
 | 
					
						
							|  |  |  |     "darwin": "osx",
 | 
					
						
							|  |  |  |     "win32": "window.exe"
 | 
					
						
							|  |  |  | }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def casadi_version_warning(casadi_version):
 | 
					
						
							|  |  |  |     msg =  'Warning: Please note that the following versions of CasADi  are '
 | 
					
						
							|  |  |  |     msg += 'officially supported: {}.\n '.format(" or ".join(ALLOWED_CASADI_VERSIONS))
 | 
					
						
							|  |  |  |     msg += 'If there is an incompatibility with the CasADi generated code, '
 | 
					
						
							|  |  |  |     msg += 'please consider changing your CasADi version.\n'
 | 
					
						
							|  |  |  |     msg += 'Version {} currently in use.'.format(casadi_version)
 | 
					
						
							|  |  |  |     print(msg)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def is_column(x):
 | 
					
						
							|  |  |  |     if isinstance(x, np.ndarray):
 | 
					
						
							|  |  |  |         if x.ndim == 1:
 | 
					
						
							|  |  |  |             return True
 | 
					
						
							|  |  |  |         elif x.ndim == 2 and x.shape[1] == 1:
 | 
					
						
							|  |  |  |             return True
 | 
					
						
							|  |  |  |         else:
 | 
					
						
							|  |  |  |             return False
 | 
					
						
							|  |  |  |     elif isinstance(x, (MX, SX, DM)):
 | 
					
						
							|  |  |  |         if x.shape[1] == 1:
 | 
					
						
							|  |  |  |             return True
 | 
					
						
							|  |  |  |         elif x.shape[0] == 0 and x.shape[1] == 0:
 | 
					
						
							|  |  |  |             return True
 | 
					
						
							|  |  |  |         else:
 | 
					
						
							|  |  |  |             return False
 | 
					
						
							|  |  |  |     elif x == None or x == []:
 | 
					
						
							|  |  |  |         return False
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |         raise Exception("is_column expects one of the following types: np.ndarray, casadi.MX, casadi.SX."
 | 
					
						
							|  |  |  |                         + " Got: " + str(type(x)))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def is_empty(x):
 | 
					
						
							|  |  |  |     if isinstance(x, (MX, SX, DM)):
 | 
					
						
							|  |  |  |         return x.is_empty()
 | 
					
						
							|  |  |  |     elif isinstance(x, np.ndarray):
 | 
					
						
							|  |  |  |         if np.prod(x.shape) == 0:
 | 
					
						
							|  |  |  |             return True
 | 
					
						
							|  |  |  |         else:
 | 
					
						
							|  |  |  |             return False
 | 
					
						
							|  |  |  |     elif x == None or x == []:
 | 
					
						
							|  |  |  |         return True
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |         raise Exception("is_empty expects one of the following types: casadi.MX, casadi.SX, "
 | 
					
						
							|  |  |  |                         + "None, numpy array empty list. Got: " + str(type(x)))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def casadi_length(x):
 | 
					
						
							|  |  |  |     if isinstance(x, (MX, SX, DM)):
 | 
					
						
							|  |  |  |         return int(np.prod(x.shape))
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |         raise Exception("casadi_length expects one of the following types: casadi.MX, casadi.SX."
 | 
					
						
							|  |  |  |                         + " Got: " + str(type(x)))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def make_model_consistent(model):
 | 
					
						
							|  |  |  |     x = model.x
 | 
					
						
							|  |  |  |     xdot = model.xdot
 | 
					
						
							|  |  |  |     u = model.u
 | 
					
						
							|  |  |  |     z = model.z
 | 
					
						
							|  |  |  |     p = model.p
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if isinstance(x, MX):
 | 
					
						
							|  |  |  |         symbol = MX.sym
 | 
					
						
							|  |  |  |     elif isinstance(x, SX):
 | 
					
						
							|  |  |  |         symbol = SX.sym
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |         raise Exception("model.x must be casadi.SX or casadi.MX, got {}".format(type(x)))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if is_empty(p):
 | 
					
						
							|  |  |  |         model.p = symbol('p', 0, 0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if is_empty(z):
 | 
					
						
							|  |  |  |         model.z = symbol('z', 0, 0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return model
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_tera():
 | 
					
						
							|  |  |  |     tera_path = get_tera_exec_path()
 | 
					
						
							|  |  |  |     acados_path = get_acados_path()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if os.path.exists(tera_path) and os.access(tera_path, os.X_OK):
 | 
					
						
							|  |  |  |         return tera_path
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     repo_url = "https://github.com/acados/tera_renderer/releases"
 | 
					
						
							|  |  |  |     url = "{}/download/v{}/t_renderer-v{}-{}".format(
 | 
					
						
							|  |  |  |         repo_url, TERA_VERSION, TERA_VERSION, platform2tera[sys.platform])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     manual_install = 'For manual installation follow these instructions:\n'
 | 
					
						
							|  |  |  |     manual_install += '1 Download binaries from {}\n'.format(url)
 | 
					
						
							|  |  |  |     manual_install += '2 Copy them in {}/bin\n'.format(acados_path)
 | 
					
						
							|  |  |  |     manual_install += '3 Strip the version and platform from the binaries: '
 | 
					
						
							|  |  |  |     manual_install += 'as t_renderer-v0.0.34-X -> t_renderer)\n'
 | 
					
						
							|  |  |  |     manual_install += '4 Enable execution privilege on the file "t_renderer" with:\n'
 | 
					
						
							|  |  |  |     manual_install += '"chmod +x {}"\n\n'.format(tera_path)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     msg = "\n"
 | 
					
						
							|  |  |  |     msg += 'Tera template render executable not found, '
 | 
					
						
							|  |  |  |     msg += 'while looking in path:\n{}\n'.format(tera_path)
 | 
					
						
							|  |  |  |     msg += 'In order to be able to render the templates, '
 | 
					
						
							|  |  |  |     msg += 'you need to download the tera renderer binaries from:\n'
 | 
					
						
							|  |  |  |     msg += '{}\n\n'.format(repo_url)
 | 
					
						
							|  |  |  |     msg += 'Do you wish to set up Tera renderer automatically?\n'
 | 
					
						
							|  |  |  |     msg += 'y/N? (press y to download tera or any key for manual installation)\n'
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if input(msg) == 'y':
 | 
					
						
							|  |  |  |         print("Dowloading {}".format(url))
 | 
					
						
							|  |  |  |         with urllib.request.urlopen(url) as response, open(tera_path, 'wb') as out_file:
 | 
					
						
							|  |  |  |             shutil.copyfileobj(response, out_file)
 | 
					
						
							|  |  |  |         print("Successfully downloaded t_renderer.")
 | 
					
						
							|  |  |  |         os.chmod(tera_path, 0o755)
 | 
					
						
							|  |  |  |         return tera_path
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     msg_cancel = "\nYou cancelled automatic download.\n\n"
 | 
					
						
							|  |  |  |     msg_cancel += manual_install
 | 
					
						
							|  |  |  |     msg_cancel += "Once installed re-run your script.\n\n"
 | 
					
						
							|  |  |  |     print(msg_cancel)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     sys.exit(1)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def render_template(in_file, out_file, template_dir, json_path):
 | 
					
						
							|  |  |  |     cwd = os.getcwd()
 | 
					
						
							|  |  |  |     if not os.path.exists(template_dir):
 | 
					
						
							|  |  |  |         os.mkdir(template_dir)
 | 
					
						
							|  |  |  |     os.chdir(template_dir)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     tera_path = get_tera()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # setting up loader and environment
 | 
					
						
							|  |  |  |     acados_path = os.path.dirname(os.path.abspath(__file__))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     template_glob = acados_path + '/c_templates_tera/*'
 | 
					
						
							|  |  |  |     acados_template_path = acados_path + '/c_templates_tera'
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # call tera as system cmd
 | 
					
						
							|  |  |  |     os_cmd = "{tera_path} '{template_glob}' '{in_file}' '{json_path}' '{out_file}'".format(
 | 
					
						
							|  |  |  |         tera_path=tera_path,
 | 
					
						
							|  |  |  |         template_glob=template_glob,
 | 
					
						
							|  |  |  |         json_path=json_path,
 | 
					
						
							|  |  |  |         in_file=in_file,
 | 
					
						
							|  |  |  |         out_file=out_file
 | 
					
						
							|  |  |  |     )
 | 
					
						
							|  |  |  |     status = os.system(os_cmd)
 | 
					
						
							|  |  |  |     if (status != 0):
 | 
					
						
							|  |  |  |         raise Exception('Rendering of {} failed! Exiting.\n'.format(in_file))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     os.chdir(cwd)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## Conversion functions
 | 
					
						
							|  |  |  | def np_array_to_list(np_array):
 | 
					
						
							|  |  |  |     if isinstance(np_array, (np.ndarray)):
 | 
					
						
							|  |  |  |         return np_array.tolist()
 | 
					
						
							|  |  |  |     elif isinstance(np_array, (SX)):
 | 
					
						
							|  |  |  |         return DM(np_array).full()
 | 
					
						
							|  |  |  |     elif isinstance(np_array, (DM)):
 | 
					
						
							|  |  |  |         return np_array.full()
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |         raise(Exception(
 | 
					
						
							|  |  |  |             "Cannot convert to list type {}".format(type(np_array))
 | 
					
						
							|  |  |  |         ))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def format_class_dict(d):
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     removes the __ artifact from class to dict conversion
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     out = {}
 | 
					
						
							|  |  |  |     for k, v in d.items():
 | 
					
						
							|  |  |  |         if isinstance(v, dict):
 | 
					
						
							|  |  |  |             v = format_class_dict(v)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         out_key = k.split('__', 1)[-1]
 | 
					
						
							|  |  |  |         out[k.replace(k, out_key)] = v
 | 
					
						
							|  |  |  |     return out
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def acados_class2dict(class_instance):
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     removes the __ artifact from class to dict conversion
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     d = dict(class_instance.__dict__)
 | 
					
						
							|  |  |  |     out = {}
 | 
					
						
							|  |  |  |     for k, v in d.items():
 | 
					
						
							|  |  |  |         if isinstance(v, dict):
 | 
					
						
							|  |  |  |             v = format_class_dict(v)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         out_key = k.split('__', 1)[-1]
 | 
					
						
							|  |  |  |         out[k.replace(k, out_key)] = v
 | 
					
						
							|  |  |  |     return out
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def ocp_check_against_layout(ocp_nlp, ocp_dims):
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     Check dimensions against layout
 | 
					
						
							|  |  |  |     Parameters
 | 
					
						
							|  |  |  |     ---------
 | 
					
						
							|  |  |  |     ocp_nlp : dict
 | 
					
						
							|  |  |  |         dictionary loaded from JSON to be post-processed.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ocp_dims : instance of AcadosOcpDims
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # load JSON layout
 | 
					
						
							|  |  |  |     current_module = sys.modules[__name__]
 | 
					
						
							|  |  |  |     acados_path = os.path.dirname(current_module.__file__)
 | 
					
						
							|  |  |  |     with open(acados_path + '/acados_layout.json', 'r') as f:
 | 
					
						
							|  |  |  |         ocp_nlp_layout = json.load(f)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ocp_check_against_layout_recursion(ocp_nlp, ocp_dims, ocp_nlp_layout)
 | 
					
						
							|  |  |  |     return
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def ocp_check_against_layout_recursion(ocp_nlp, ocp_dims, layout):
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for key, item in ocp_nlp.items():
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         try:
 | 
					
						
							|  |  |  |             layout_of_key = layout[key]
 | 
					
						
							|  |  |  |         except KeyError:
 | 
					
						
							|  |  |  |             raise Exception("ocp_check_against_layout_recursion: field" \
 | 
					
						
							|  |  |  |                             " '{0}' is not in layout but in OCP description.".format(key))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if isinstance(item, dict):
 | 
					
						
							|  |  |  |             ocp_check_against_layout_recursion(item, ocp_dims, layout_of_key)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if 'ndarray' in layout_of_key:
 | 
					
						
							|  |  |  |             if isinstance(item, int) or isinstance(item, float):
 | 
					
						
							|  |  |  |                 item = np.array([item])
 | 
					
						
							|  |  |  |         if isinstance(item, (list, np.ndarray)) and (layout_of_key[0] != 'str'):
 | 
					
						
							|  |  |  |             dim_layout = []
 | 
					
						
							|  |  |  |             dim_names = layout_of_key[1]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             for dim_name in dim_names:
 | 
					
						
							|  |  |  |                 dim_layout.append(ocp_dims[dim_name])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             dims = tuple(dim_layout)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             item = np.array(item)
 | 
					
						
							|  |  |  |             item_dims = item.shape
 | 
					
						
							|  |  |  |             if len(item_dims) != len(dims):
 | 
					
						
							|  |  |  |                 raise Exception('Mismatching dimensions for field {0}. ' \
 | 
					
						
							|  |  |  |                     'Expected {1} dimensional array, got {2} dimensional array.' \
 | 
					
						
							|  |  |  |                         .format(key, len(dims), len(item_dims)))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if np.prod(item_dims) != 0 or np.prod(dims) != 0:
 | 
					
						
							|  |  |  |                 if dims != item_dims:
 | 
					
						
							|  |  |  |                     raise Exception('acados -- mismatching dimensions for field {0}. ' \
 | 
					
						
							|  |  |  |                         'Provided data has dimensions {1}, ' \
 | 
					
						
							|  |  |  |                         'while associated dimensions {2} are {3}' \
 | 
					
						
							|  |  |  |                             .format(key, item_dims, dim_names, dims))
 | 
					
						
							|  |  |  |     return
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def J_to_idx(J):
 | 
					
						
							|  |  |  |     nrows = J.shape[0]
 | 
					
						
							|  |  |  |     idx = np.zeros((nrows, ))
 | 
					
						
							|  |  |  |     for i in range(nrows):
 | 
					
						
							|  |  |  |         this_idx = np.nonzero(J[i,:])[0]
 | 
					
						
							|  |  |  |         if len(this_idx) != 1:
 | 
					
						
							|  |  |  |             raise Exception('Invalid J matrix structure detected, ' \
 | 
					
						
							|  |  |  |                 'must contain one nonzero element per row. Exiting.')
 | 
					
						
							|  |  |  |         if this_idx.size > 0 and J[i,this_idx[0]] != 1:
 | 
					
						
							|  |  |  |             raise Exception('J matrices can only contain 1s. Exiting.')
 | 
					
						
							|  |  |  |         idx[i] = this_idx[0]
 | 
					
						
							|  |  |  |     return idx
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def J_to_idx_slack(J):
 | 
					
						
							|  |  |  |     nrows = J.shape[0]
 | 
					
						
							|  |  |  |     ncol = J.shape[1]
 | 
					
						
							|  |  |  |     idx = np.zeros((ncol, ))
 | 
					
						
							|  |  |  |     i_idx = 0
 | 
					
						
							|  |  |  |     for i in range(nrows):
 | 
					
						
							|  |  |  |         this_idx = np.nonzero(J[i,:])[0]
 | 
					
						
							|  |  |  |         if len(this_idx) == 1:
 | 
					
						
							|  |  |  |             idx[i_idx] = i
 | 
					
						
							|  |  |  |             i_idx = i_idx + 1
 | 
					
						
							|  |  |  |         elif len(this_idx) > 1:
 | 
					
						
							|  |  |  |             raise Exception('J_to_idx_slack: Invalid J matrix. Exiting. ' \
 | 
					
						
							|  |  |  |                 'Found more than one nonzero in row ' + str(i))
 | 
					
						
							|  |  |  |         if this_idx.size > 0 and J[i,this_idx[0]] != 1:
 | 
					
						
							|  |  |  |             raise Exception('J_to_idx_slack: J matrices can only contain 1s, ' \
 | 
					
						
							|  |  |  |                  'got J(' + str(i) + ', ' + str(this_idx[0]) + ') = ' + str(J[i,this_idx[0]]) )
 | 
					
						
							|  |  |  |     if not i_idx == ncol:
 | 
					
						
							|  |  |  |             raise Exception('J_to_idx_slack: J must contain a 1 in every column!')
 | 
					
						
							|  |  |  |     return idx
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def acados_dae_model_json_dump(model):
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # load model
 | 
					
						
							|  |  |  |     x = model.x
 | 
					
						
							|  |  |  |     xdot = model.xdot
 | 
					
						
							|  |  |  |     u = model.u
 | 
					
						
							|  |  |  |     z = model.z
 | 
					
						
							|  |  |  |     p = model.p
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     f_impl = model.f_impl_expr
 | 
					
						
							|  |  |  |     model_name = model.name
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # create struct with impl_dae_fun, casadi_version
 | 
					
						
							|  |  |  |     fun_name = model_name + '_impl_dae_fun'
 | 
					
						
							|  |  |  |     impl_dae_fun = Function(fun_name, [x, xdot, u, z, p], [f_impl])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     casadi_version = CasadiMeta.version()
 | 
					
						
							|  |  |  |     str_impl_dae_fun = impl_dae_fun.serialize()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     dae_dict = {"str_impl_dae_fun": str_impl_dae_fun, "casadi_version": casadi_version}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # dump
 | 
					
						
							|  |  |  |     json_file = model_name + '_acados_dae.json'
 | 
					
						
							|  |  |  |     with open(json_file, 'w') as f:
 | 
					
						
							|  |  |  |         json.dump(dae_dict, f, default=np_array_to_list, indent=4, sort_keys=True)
 | 
					
						
							|  |  |  |     print("dumped ", model_name, " dae to file:", json_file, "\n")
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def set_up_imported_gnsf_model(acados_formulation):
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gnsf = acados_formulation.gnsf_model
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # check CasADi version
 | 
					
						
							|  |  |  |     # dump_casadi_version = gnsf['casadi_version']
 | 
					
						
							|  |  |  |     # casadi_version = CasadiMeta.version()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # if not casadi_version == dump_casadi_version:
 | 
					
						
							|  |  |  |     #     print("WARNING: GNSF model was dumped with another CasADi version.\n"
 | 
					
						
							|  |  |  |     #             + "This might yield errors. Please use the same version for compatibility, serialize version: "
 | 
					
						
							|  |  |  |     #             + dump_casadi_version + " current Python CasADi verison: " + casadi_version)
 | 
					
						
							|  |  |  |     #     input("Press any key to attempt to continue...")
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # load model
 | 
					
						
							|  |  |  |     phi_fun = Function.deserialize(gnsf['phi_fun'])
 | 
					
						
							|  |  |  |     phi_fun_jac_y = Function.deserialize(gnsf['phi_fun_jac_y'])
 | 
					
						
							|  |  |  |     phi_jac_y_uhat = Function.deserialize(gnsf['phi_jac_y_uhat'])
 | 
					
						
							|  |  |  |     get_matrices_fun = Function.deserialize(gnsf['get_matrices_fun'])
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # obtain gnsf dimensions
 | 
					
						
							|  |  |  |     size_gnsf_A = get_matrices_fun.size_out(0)
 | 
					
						
							|  |  |  |     acados_formulation.dims.gnsf_nx1 = size_gnsf_A[1]
 | 
					
						
							|  |  |  |     acados_formulation.dims.gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
 | 
					
						
							|  |  |  |     acados_formulation.dims.gnsf_nuhat = max(phi_fun.size_in(1))
 | 
					
						
							|  |  |  |     acados_formulation.dims.gnsf_ny = max(phi_fun.size_in(0))
 | 
					
						
							|  |  |  |     acados_formulation.dims.gnsf_nout = max(phi_fun.size_out(0))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # save gnsf functions in model
 | 
					
						
							|  |  |  |     acados_formulation.model.phi_fun = phi_fun
 | 
					
						
							|  |  |  |     acados_formulation.model.phi_fun_jac_y = phi_fun_jac_y
 | 
					
						
							|  |  |  |     acados_formulation.model.phi_jac_y_uhat = phi_jac_y_uhat
 | 
					
						
							|  |  |  |     acados_formulation.model.get_matrices_fun = get_matrices_fun
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if "f_lo_fun_jac_x1k1uz" in gnsf:
 | 
					
						
							|  |  |  |         f_lo_fun_jac_x1k1uz = Function.deserialize(gnsf['f_lo_fun_jac_x1k1uz'])
 | 
					
						
							|  |  |  |         acados_formulation.model.f_lo_fun_jac_x1k1uz = f_lo_fun_jac_x1k1uz
 | 
					
						
							|  |  |  |     else:
 | 
					
						
							|  |  |  |         dummy_var_x1 = SX.sym('dummy_var_x1', acados_formulation.dims.gnsf_nx1)
 | 
					
						
							|  |  |  |         dummy_var_x1dot = SX.sym('dummy_var_x1dot', acados_formulation.dims.gnsf_nx1)
 | 
					
						
							|  |  |  |         dummy_var_z1 = SX.sym('dummy_var_z1', acados_formulation.dims.gnsf_nz1)
 | 
					
						
							|  |  |  |         dummy_var_u = SX.sym('dummy_var_z1', acados_formulation.dims.nu)
 | 
					
						
							|  |  |  |         dummy_var_p = SX.sym('dummy_var_z1', acados_formulation.dims.np)
 | 
					
						
							|  |  |  |         empty_var = SX.sym('empty_var', 0, 0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         empty_fun = Function('empty_fun', \
 | 
					
						
							|  |  |  |             [dummy_var_x1, dummy_var_x1dot, dummy_var_z1, dummy_var_u, dummy_var_p],
 | 
					
						
							|  |  |  |                 [empty_var])
 | 
					
						
							|  |  |  |         acados_formulation.model.f_lo_fun_jac_x1k1uz = empty_fun
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     del acados_formulation.gnsf_model
 |