|  |  |  | #!/usr/bin/env python3
 | 
					
						
							|  |  |  | # type: ignore
 | 
					
						
							|  |  |  | '''
 | 
					
						
							|  |  |  | System tools like top/htop can only show current cpu usage values, so I write this script to do statistics jobs.
 | 
					
						
							|  |  |  |   Features:
 | 
					
						
							|  |  |  |     Use psutil library to sample cpu usage(avergage for all cores) of openpilot processes, at a rate of 5 samples/sec.
 | 
					
						
							|  |  |  |     Do cpu usage statistics periodically, 5 seconds as a cycle.
 | 
					
						
							|  |  |  |     Calculate the average cpu usage within this cycle.
 | 
					
						
							|  |  |  |     Calculate minumium/maximum/accumulated_average cpu usage as long term inspections.
 | 
					
						
							|  |  |  |     Monitor multiple processes simuteneously.
 | 
					
						
							|  |  |  |   Sample usage:
 | 
					
						
							|  |  |  |     root@localhost:/data/openpilot$ python selfdrive/debug/cpu_usage_stat.py pandad,ubloxd
 | 
					
						
							|  |  |  |     ('Add monitored proc:', './pandad')
 | 
					
						
							|  |  |  |     ('Add monitored proc:', 'python locationd/ubloxd.py')
 | 
					
						
							|  |  |  |     pandad: 1.96%, min: 1.96%, max: 1.96%, acc: 1.96%
 | 
					
						
							|  |  |  |     ubloxd.py: 0.39%, min: 0.39%, max: 0.39%, acc: 0.39%
 | 
					
						
							|  |  |  | '''
 | 
					
						
							|  |  |  | import psutil
 | 
					
						
							|  |  |  | import time
 | 
					
						
							|  |  |  | import os
 | 
					
						
							|  |  |  | import sys
 | 
					
						
							|  |  |  | import numpy as np
 | 
					
						
							|  |  |  | import argparse
 | 
					
						
							|  |  |  | import re
 | 
					
						
							|  |  |  | from collections import defaultdict
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from openpilot.system.manager.process_config import managed_processes
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Do statistics every 5 seconds
 | 
					
						
							|  |  |  | PRINT_INTERVAL = 5
 | 
					
						
							|  |  |  | SLEEP_INTERVAL = 0.2
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | monitored_proc_names = [
 | 
					
						
							|  |  |  |   # android procs
 | 
					
						
							|  |  |  |   'SurfaceFlinger', 'sensors.qcom'
 | 
					
						
							|  |  |  | ] + list(managed_processes.keys())
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cpu_time_names = ['user', 'system', 'children_user', 'children_system']
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | timer = getattr(time, 'monotonic', time.time)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_arg_parser():
 | 
					
						
							|  |  |  |   parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   parser.add_argument("proc_names", nargs="?", default='',
 | 
					
						
							|  |  |  |                       help="Process names to be monitored, comma separated")
 | 
					
						
							|  |  |  |   parser.add_argument("--list_all", action='store_true',
 | 
					
						
							|  |  |  |                       help="Show all running processes' cmdline")
 | 
					
						
							|  |  |  |   parser.add_argument("--detailed_times", action='store_true',
 | 
					
						
							|  |  |  |                       help="show cpu time details (split by user, system, child user, child system)")
 | 
					
						
							|  |  |  |   return parser
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__":
 | 
					
						
							|  |  |  |   args = get_arg_parser().parse_args(sys.argv[1:])
 | 
					
						
							|  |  |  |   if args.list_all:
 | 
					
						
							|  |  |  |     for p in psutil.process_iter():
 | 
					
						
							|  |  |  |       print('cmdline', p.cmdline(), 'name', p.name())
 | 
					
						
							|  |  |  |     sys.exit(0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if len(args.proc_names) > 0:
 | 
					
						
							|  |  |  |     monitored_proc_names = args.proc_names.split(',')
 | 
					
						
							|  |  |  |   monitored_procs = []
 | 
					
						
							|  |  |  |   stats = {}
 | 
					
						
							|  |  |  |   for p in psutil.process_iter():
 | 
					
						
							|  |  |  |     if p == psutil.Process():
 | 
					
						
							|  |  |  |       continue
 | 
					
						
							|  |  |  |     matched = any(l for l in p.cmdline() if any(pn for pn in monitored_proc_names if re.match(fr'.*{pn}.*', l, re.M | re.I)))
 | 
					
						
							|  |  |  |     if matched:
 | 
					
						
							|  |  |  |       k = ' '.join(p.cmdline())
 | 
					
						
							|  |  |  |       print('Add monitored proc:', k)
 | 
					
						
							|  |  |  |       stats[k] = {'cpu_samples': defaultdict(list), 'min': defaultdict(lambda: None), 'max': defaultdict(lambda: None),
 | 
					
						
							|  |  |  |                   'avg': defaultdict(float), 'last_cpu_times': None, 'last_sys_time': None}
 | 
					
						
							|  |  |  |       stats[k]['last_sys_time'] = timer()
 | 
					
						
							|  |  |  |       stats[k]['last_cpu_times'] = p.cpu_times()
 | 
					
						
							|  |  |  |       monitored_procs.append(p)
 | 
					
						
							|  |  |  |   i = 0
 | 
					
						
							|  |  |  |   interval_int = int(PRINT_INTERVAL / SLEEP_INTERVAL)
 | 
					
						
							|  |  |  |   while True:
 | 
					
						
							|  |  |  |     for p in monitored_procs:
 | 
					
						
							|  |  |  |       k = ' '.join(p.cmdline())
 | 
					
						
							|  |  |  |       cur_sys_time = timer()
 | 
					
						
							|  |  |  |       cur_cpu_times = p.cpu_times()
 | 
					
						
							|  |  |  |       cpu_times = np.subtract(cur_cpu_times, stats[k]['last_cpu_times']) / (cur_sys_time - stats[k]['last_sys_time'])
 | 
					
						
							|  |  |  |       stats[k]['last_sys_time'] = cur_sys_time
 | 
					
						
							|  |  |  |       stats[k]['last_cpu_times'] = cur_cpu_times
 | 
					
						
							|  |  |  |       cpu_percent = 0
 | 
					
						
							|  |  |  |       for num, name in enumerate(cpu_time_names):
 | 
					
						
							|  |  |  |         stats[k]['cpu_samples'][name].append(cpu_times[num])
 | 
					
						
							|  |  |  |         cpu_percent += cpu_times[num]
 | 
					
						
							|  |  |  |       stats[k]['cpu_samples']['total'].append(cpu_percent)
 | 
					
						
							|  |  |  |     time.sleep(SLEEP_INTERVAL)
 | 
					
						
							|  |  |  |     i += 1
 | 
					
						
							|  |  |  |     if i % interval_int == 0:
 | 
					
						
							|  |  |  |       l = []
 | 
					
						
							|  |  |  |       for k, stat in stats.items():
 | 
					
						
							|  |  |  |         if len(stat['cpu_samples']) <= 0:
 | 
					
						
							|  |  |  |           continue
 | 
					
						
							|  |  |  |         for name, samples in stat['cpu_samples'].items():
 | 
					
						
							|  |  |  |           samples = np.array(samples)
 | 
					
						
							|  |  |  |           avg = samples.mean()
 | 
					
						
							|  |  |  |           c = samples.size
 | 
					
						
							|  |  |  |           min_cpu = np.amin(samples)
 | 
					
						
							|  |  |  |           max_cpu = np.amax(samples)
 | 
					
						
							|  |  |  |           if stat['min'][name] is None or min_cpu < stat['min'][name]:
 | 
					
						
							|  |  |  |             stat['min'][name] = min_cpu
 | 
					
						
							|  |  |  |           if stat['max'][name] is None or max_cpu > stat['max'][name]:
 | 
					
						
							|  |  |  |             stat['max'][name] = max_cpu
 | 
					
						
							|  |  |  |           stat['avg'][name] = (stat['avg'][name] * (i - c) + avg * c) / (i)
 | 
					
						
							|  |  |  |           stat['cpu_samples'][name] = []
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         msg = f"avg: {stat['avg']['total']:.2%}, min: {stat['min']['total']:.2%}, max: {stat['max']['total']:.2%} {os.path.basename(k)}"
 | 
					
						
							|  |  |  |         if args.detailed_times:
 | 
					
						
							|  |  |  |           for stat_type in ['avg', 'min', 'max']:
 | 
					
						
							|  |  |  |             msg += f"\n {stat_type}: {[(name + ':' + str(round(stat[stat_type][name] * 100, 2))) for name in cpu_time_names]}"
 | 
					
						
							|  |  |  |         l.append((os.path.basename(k), stat['avg']['total'], msg))
 | 
					
						
							|  |  |  |       l.sort(key=lambda x: -x[1])
 | 
					
						
							|  |  |  |       for x in l:
 | 
					
						
							|  |  |  |         print(x[2])
 | 
					
						
							|  |  |  |       print('avg sum: {:.2%} over {} samples {} seconds\n'.format(
 | 
					
						
							|  |  |  |         sum(stat['avg']['total'] for k, stat in stats.items()), i, i * SLEEP_INTERVAL
 | 
					
						
							|  |  |  |       ))
 |