open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

106 lines
3.5 KiB

#!/usr/bin/env python
import numpy as np
from numpy.linalg import inv
# dynamic bycicle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani"##
# Xdot = A*X + B*U
# where X = [v, r], with v and r lateral speed and rotational speed, respectively
# and U is the steering angle (controller input)
#
# A depends on longitudinal speed, u, and vehicle parameters CP
def create_dyn_state_matrices(u, VM):
A = np.zeros((2, 2))
B = np.zeros((2, 1))
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
return A, B
def kin_ss_sol(sa, u, VM):
# kinematic solution, useful when speed ~ 0
K = np.zeros((2, 1))
K[0, 0] = VM.aR / VM.sR / VM.l * u
K[1, 0] = 1. / VM.sR / VM.l * u
return K * sa
def dyn_ss_sol(sa, u, VM):
# Dynamic solution, useful when speed > 0
A, B = create_dyn_state_matrices(u, VM)
return - np.matmul(inv(A), B) * sa
def calc_slip_factor(VM):
# the slip factor is a measure of how the curvature changes with speed
# it's positive for Oversteering vehicle, negative (usual case) otherwise
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
class VehicleModel(object):
def __init__(self, CP, init_state=np.asarray([[0.], [0.]])):
self.dt = 0.1
lookahead = 2. # s
self.steps = int(lookahead / self.dt)
self.update_state(init_state)
self.state_pred = np.zeros((self.steps, self.state.shape[0]))
self.CP = CP
# for math readability, convert long names car params into short names
self.m = CP.mass
self.j = CP.rotationalInertia
self.l = CP.wheelbase
self.aF = CP.centerToFront
self.aR = CP.wheelbase - CP.centerToFront
self.cF = CP.tireStiffnessFront
self.cR = CP.tireStiffnessRear
self.sR = CP.steerRatio
self.chi = CP.steerRatioRear
def update_state(self, state):
self.state = state
def steady_state_sol(self, sa, u):
# if the speed is too small we can't use the dynamic model
# (tire slip is undefined), we then use the kinematic model
if u > 0.1:
return dyn_ss_sol(sa, u, self)
else:
return kin_ss_sol(sa, u, self)
def calc_curvature(self, sa, u):
# this formula can be derived from state equations in steady state conditions
return self.curvature_factor(u) * sa / self.sR
def curvature_factor(self, u):
sf = calc_slip_factor(self)
return (1. - self.chi)/(1. - sf * u**2) / self.l
def get_steer_from_curvature(self, curv, u):
return curv * self.sR * 1.0 / self.curvature_factor(u)
def state_prediction(self, sa, u):
# U is the matrix of the controls
# u is the long speed
A, B = create_dyn_state_matrices(u, self)
return np.matmul((A * self.dt + np.identity(2)), self.state) + B * sa * self.dt
def yaw_rate(self, sa, u):
return self.calc_curvature(sa, u) * u
if __name__ == '__main__':
from selfdrive.car.honda.interface import CarInterface
CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING", {})
#from selfdrive.car.hyundai.interface import CarInterface
#CP = CarInterface.get_params("HYUNDAI SANTA FE UNLIMITED 2019", {})
#print CP
VM = VehicleModel(CP)
#print VM.steady_state_sol(.1, 0.15)
#print calc_slip_factor(VM)
print VM.yaw_rate(1.*np.pi/180, 32.) * 180./np.pi
#print VM.curvature_factor(32)