open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

76 lines
2.5 KiB

import math
import numpy as np
from common.numpy_fast import interp
import selfdrive.messaging as messaging
def compute_path_pinv():
deg = 3
x = np.arange(50.0)
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
pinv = np.linalg.pinv(X)
return pinv
def model_polyfit(points, path_pinv):
return np.dot(path_pinv, map(float, points))
# lane width http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
_LANE_WIDTH_V = [3., 3.8]
# break points of speed
_LANE_WIDTH_BP = [0., 31.]
def calc_desired_path(l_poly, r_poly, p_poly, l_prob, r_prob, p_prob, speed):
#*** this function computes the poly for the center of the lane, averaging left and right polys
lane_width = interp(speed, _LANE_WIDTH_BP, _LANE_WIDTH_V)
# lanes in US are ~3.6m wide
half_lane_poly = np.array([0., 0., 0., lane_width / 2.])
if l_prob + r_prob > 0.01:
c_poly = ((l_poly - half_lane_poly) * l_prob +
(r_poly + half_lane_poly) * r_prob) / (l_prob + r_prob)
c_prob = math.sqrt((l_prob**2 + r_prob**2) / 2.)
else:
c_poly = np.zeros(4)
c_prob = 0.
p_weight = 1. # predicted path weight relatively to the center of the lane
d_poly = list((c_poly*c_prob + p_poly*p_prob*p_weight ) / (c_prob + p_prob*p_weight))
return d_poly, c_poly, c_prob
class PathPlanner(object):
def __init__(self, model):
self.model = model
self.dead = True
self.d_poly = [0., 0., 0., 0.]
self.last_model = 0.
self.logMonoTime = 0
self.lead_dist, self.lead_prob, self.lead_var = 0, 0, 1
self._path_pinv = compute_path_pinv()
def update(self, cur_time, v_ego):
md = messaging.recv_sock(self.model)
if md is not None:
self.logMonoTime = md.logMonoTime
p_poly = model_polyfit(md.model.path.points, self._path_pinv) # predicted path
l_poly = model_polyfit(md.model.leftLane.points, self._path_pinv) # left line
r_poly = model_polyfit(md.model.rightLane.points, self._path_pinv) # right line
p_prob = 1. # model does not tell this probability yet, so set to 1 for now
l_prob = md.model.leftLane.prob # left line prob
r_prob = md.model.rightLane.prob # right line prob
self.lead_dist = md.model.lead.dist
self.lead_prob = md.model.lead.prob
self.lead_var = md.model.lead.std**2
# compute target path
self.d_poly, _, _ = calc_desired_path(l_poly, r_poly, p_poly, l_prob, r_prob, p_prob, v_ego)
self.last_model = cur_time
self.dead = False
elif cur_time - self.last_model > 0.5:
self.dead = True