open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

90 lines
3.0 KiB

import numpy as np
import math
from common.numpy_fast import interp
_K_CURV_V = [1., 0.6]
_K_CURV_BP = [0., 0.002]
# lane width http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
_LANE_WIDTH_V = [3., 3.8]
# break points of speed
_LANE_WIDTH_BP = [0., 31.]
def calc_d_lookahead(v_ego, d_poly):
# this function computes how far too look for lateral control
# howfar we look ahead is function of speed and how much curvy is the path
offset_lookahead = 1.
k_lookahead = 7.
# integrate abs value of second derivative of poly to get a measure of path curvature
pts_len = 50. # m
if len(d_poly) > 0:
pts = np.polyval([6 * d_poly[0], 2 * d_poly[1]], np.arange(0, pts_len))
else:
pts = 0.
curv = np.sum(np.abs(pts)) / pts_len
k_curv = interp(curv, _K_CURV_BP, _K_CURV_V)
# sqrt on speed is needed to keep, for a given curvature, the y_des
# proportional to speed. Indeed, y_des is prop to d_lookahead^2
# 36m at 25m/s
d_lookahead = offset_lookahead + math.sqrt(max(v_ego, 0)) * k_lookahead * k_curv
return d_lookahead
def calc_lookahead_offset(v_ego, angle_steers, d_lookahead, VM, angle_offset):
# this function returns the lateral offset given the steering angle, speed and the lookahead distance
sa = math.radians(angle_steers - angle_offset)
curvature = VM.calc_curvature(sa, v_ego)
# clip is to avoid arcsin NaNs due to too sharp turns
y_actual = d_lookahead * np.tan(np.arcsin(np.clip(d_lookahead * curvature, -0.999, 0.999)) / 2.)
return y_actual, curvature
def calc_desired_steer_angle(v_ego, y_des, d_lookahead, VM, angle_offset):
# inverse of the above function
curvature = np.sin(np.arctan(y_des / d_lookahead) * 2.) / d_lookahead
steer_des = math.degrees(VM.get_steer_from_curvature(curvature, v_ego)) + angle_offset
return steer_des, curvature
def compute_path_pinv(l=50):
deg = 3
x = np.arange(l*1.0)
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
pinv = np.linalg.pinv(X)
return pinv
def model_polyfit(points, path_pinv):
getting ready for Python 3 (#619) * tabs to spaces python 2 to 3: https://portingguide.readthedocs.io/en/latest/syntax.html#tabs-and-spaces * use the new except syntax python 2 to 3: https://portingguide.readthedocs.io/en/latest/exceptions.html#the-new-except-syntax * make relative imports absolute python 2 to 3: https://portingguide.readthedocs.io/en/latest/imports.html#absolute-imports * Queue renamed to queue in python 3 Use the six compatibility library to support both python 2 and 3: https://portingguide.readthedocs.io/en/latest/stdlib-reorg.html#renamed-modules * replace dict.has_key() with in python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#removed-dict-has-key * make dict views compatible with python 3 python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#dict-views-and-iterators Where needed, wrapping things that will be a view in python 3 with a list(). For example, if it's accessed with [] Python 3 has no iter*() methods, so just using the values() instead of itervalues() as long as it's not too performance intensive. Note that any minor performance hit of using a list instead of a view will go away when switching to python 3. If it is intensive, we could use the six version. * Explicitly use truncating division python 2 to 3: https://portingguide.readthedocs.io/en/latest/numbers.html#division python 3 treats / as float division. When we want the result to be an integer, use // * replace map() with list comprehension where a list result is needed. In python 3, map() returns an iterator. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * replace filter() with list comprehension In python 3, filter() returns an interatoooooooooooor. python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter * wrap zip() in list() where we need the result to be a list python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-zip * clean out some lint Removes these pylint warnings: ************* Module selfdrive.car.chrysler.chryslercan W: 15, 0: Unnecessary semicolon (unnecessary-semicolon) W: 16, 0: Unnecessary semicolon (unnecessary-semicolon) W: 25, 0: Unnecessary semicolon (unnecessary-semicolon) ************* Module common.dbc W:101, 0: Anomalous backslash in string: '\?'. String constant might be missing an r prefix. (anomalous-backslash-in-string) ************* Module selfdrive.car.gm.interface R:102, 6: Redefinition of ret.minEnableSpeed type from float to int (redefined-variable-type) R:103, 6: Redefinition of ret.mass type from int to float (redefined-variable-type) ************* Module selfdrive.updated R: 20, 6: Redefinition of r type from int to str (redefined-variable-type)
6 years ago
return np.dot(path_pinv, [float(x) for x in points])
def calc_desired_path(l_poly,
r_poly,
p_poly,
l_prob,
r_prob,
p_prob,
speed,
lane_width=None):
# this function computes the poly for the center of the lane, averaging left and right polys
if lane_width is None:
lane_width = interp(speed, _LANE_WIDTH_BP, _LANE_WIDTH_V)
# lanes in US are ~3.6m wide
half_lane_poly = np.array([0., 0., 0., lane_width / 2.])
if l_prob + r_prob > 0.01:
c_poly = ((l_poly - half_lane_poly) * l_prob +
(r_poly + half_lane_poly) * r_prob) / (l_prob + r_prob)
c_prob = l_prob + r_prob - l_prob * r_prob
else:
c_poly = np.zeros(4)
c_prob = 0.
p_weight = 1. # predicted path weight relatively to the center of the lane
d_poly = list((c_poly * c_prob + p_poly * p_prob * p_weight) / (c_prob + p_prob * p_weight))
return d_poly, c_poly, c_prob