open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

197 lines
7.6 KiB

#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <unistd.h>
#ifdef QCOM
#include <eigen3/Eigen/Dense>
#else
#include <Eigen/Dense>
#endif
#include "common/timing.h"
#include "driving.h"
#ifdef MEDMODEL
#define MODEL_WIDTH 512
#define MODEL_HEIGHT 256
#define MODEL_NAME "driving_model_dlc"
#else
#define MODEL_WIDTH 320
#define MODEL_HEIGHT 160
#define MODEL_NAME "driving_model_dlc"
#endif
#define LEAD_MDN_N 5 // probs for 5 groups
#define MDN_VALS 4 // output xyva for each lead group
#define SELECTION 3 //output 3 group (lead now, in 2s and 6s)
#define MDN_GROUP_SIZE 11
#define SPEED_BUCKETS 100
#define OUTPUT_SIZE ((MODEL_PATH_DISTANCE*2) + (2*(MODEL_PATH_DISTANCE*2 + 1)) + MDN_GROUP_SIZE*LEAD_MDN_N + SELECTION + SPEED_BUCKETS)
#ifdef TEMPORAL
#define TEMPORAL_SIZE 512
#else
#define TEMPORAL_SIZE 0
#endif
Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE> vander;
void model_init(ModelState* s, cl_device_id device_id, cl_context context, int temporal) {
model_input_init(&s->in, MODEL_WIDTH, MODEL_HEIGHT, device_id, context);
const int output_size = OUTPUT_SIZE + TEMPORAL_SIZE;
s->output = (float*)malloc(output_size * sizeof(float));
memset(s->output, 0, output_size * sizeof(float));
s->m = new DefaultRunModel("../../models/driving_model.dlc", s->output, output_size);
#ifdef TEMPORAL
assert(temporal);
s->m->addRecurrent(&s->output[OUTPUT_SIZE], TEMPORAL_SIZE);
#endif
// Build Vandermonde matrix
for(int i = 0; i < MODEL_PATH_DISTANCE; i++) {
for(int j = 0; j < POLYFIT_DEGREE; j++) {
vander(i, j) = pow(i, POLYFIT_DEGREE-j-1);
}
}
}
ModelData model_eval_frame(ModelState* s, cl_command_queue q,
cl_mem yuv_cl, int width, int height,
mat3 transform, void* sock) {
struct {
float *path;
float *left_lane;
float *right_lane;
float *lead;
float *speed;
} net_outputs = {NULL};
//for (int i = 0; i < OUTPUT_SIZE + TEMPORAL_SIZE; i++) { printf("%f ", s->output[i]); } printf("\n");
float *net_input_buf = model_input_prepare(&s->in, q, yuv_cl, width, height, transform);
//printf("readinggggg \n");
//FILE *f = fopen("goof_frame", "r");
//fread(net_input_buf, sizeof(float), MODEL_HEIGHT*MODEL_WIDTH*3/2, f);
//fclose(f);
//sleep(1);
//printf("%i \n",OUTPUT_SIZE);
//printf("%i \n",MDN_GROUP_SIZE);
s->m->execute(net_input_buf);
// net outputs
net_outputs.path = &s->output[0];
net_outputs.left_lane = &s->output[MODEL_PATH_DISTANCE*2];
net_outputs.right_lane = &s->output[MODEL_PATH_DISTANCE*2 + MODEL_PATH_DISTANCE*2 + 1];
net_outputs.lead = &s->output[MODEL_PATH_DISTANCE*2 + (MODEL_PATH_DISTANCE*2 + 1)*2];
net_outputs.speed = &s->output[OUTPUT_SIZE - SPEED_BUCKETS];
ModelData model = {0};
for (int i=0; i<MODEL_PATH_DISTANCE; i++) {
model.path.points[i] = net_outputs.path[i];
model.left_lane.points[i] = net_outputs.left_lane[i] + 1.8;
model.right_lane.points[i] = net_outputs.right_lane[i] - 1.8;
model.path.stds[i] = softplus(net_outputs.path[MODEL_PATH_DISTANCE + i]);
model.left_lane.stds[i] = softplus(net_outputs.left_lane[MODEL_PATH_DISTANCE + i]);
model.right_lane.stds[i] = softplus(net_outputs.right_lane[MODEL_PATH_DISTANCE + i]);
}
model.path.std = softplus(net_outputs.path[MODEL_PATH_DISTANCE + MODEL_PATH_DISTANCE/4]);
model.left_lane.std = softplus(net_outputs.left_lane[MODEL_PATH_DISTANCE + MODEL_PATH_DISTANCE/4]);
model.right_lane.std = softplus(net_outputs.right_lane[MODEL_PATH_DISTANCE + MODEL_PATH_DISTANCE/4]);
model.path.prob = 1.;
model.left_lane.prob = sigmoid(net_outputs.left_lane[MODEL_PATH_DISTANCE*2]);
model.right_lane.prob = sigmoid(net_outputs.right_lane[MODEL_PATH_DISTANCE*2]);
poly_fit(model.path.points, model.path.stds, model.path.poly);
poly_fit(model.left_lane.points, model.left_lane.stds, model.left_lane.poly);
poly_fit(model.right_lane.points, model.right_lane.stds, model.right_lane.poly);
const double max_dist = 140.0;
const double max_rel_vel = 10.0;
// current lead
int mdn_max_idx = 0;
for (int i=1; i<LEAD_MDN_N; i++) {
if (net_outputs.lead[i*MDN_GROUP_SIZE + 8] > net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 8]) {
mdn_max_idx = i;
}
}
model.lead.prob = sigmoid(net_outputs.lead[LEAD_MDN_N*MDN_GROUP_SIZE]);
model.lead.dist = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE] * max_dist;
model.lead.std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS]) * max_dist;
model.lead.rel_y = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 1];
model.lead.rel_y_std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 1]);
model.lead.rel_v = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 2] * max_rel_vel;
model.lead.rel_v_std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 2]) * max_rel_vel;
model.lead.rel_a = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 3];
model.lead.rel_a_std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 3]);
// lead in 2s
mdn_max_idx = 0;
for (int i=1; i<LEAD_MDN_N; i++) {
if (net_outputs.lead[i*MDN_GROUP_SIZE + 9] > net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 9]) {
mdn_max_idx = i;
}
}
model.lead_future.prob = sigmoid(net_outputs.lead[LEAD_MDN_N*MDN_GROUP_SIZE + 1]);
model.lead_future.dist = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE] * max_dist;
model.lead_future.std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS]) * max_dist;
model.lead_future.rel_y = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 1];
model.lead_future.rel_y_std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 1]);
model.lead_future.rel_v = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 2] * max_rel_vel;
model.lead_future.rel_v_std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 2]) * max_rel_vel;
model.lead_future.rel_a = net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 3];
model.lead_future.rel_a_std = softplus(net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 3]);
// get speed percentiles numbers represent 5th, 15th, ... 95th percentile
for (int i=0; i < SPEED_PERCENTILES; i++) {
model.speed[i] = ((float) SPEED_BUCKETS)/2.0;
}
float sum = 0;
for (int idx = 0; idx < SPEED_BUCKETS; idx++) {
sum += net_outputs.speed[idx];
int idx_percentile = (sum + .05) * SPEED_PERCENTILES;
if (idx_percentile < SPEED_PERCENTILES ){
model.speed[idx_percentile] = ((float)idx)/2.0;
}
}
// make sure no percentiles are skipped
for (int i=SPEED_PERCENTILES-1; i > 0; i--){
if (model.speed[i-1] > model.speed[i]){
model.speed[i-1] = model.speed[i];
}
}
return model;
}
void model_free(ModelState* s) {
free(s->output);
model_input_free(&s->in);
delete s->m;
}
void poly_fit(float *in_pts, float *in_stds, float *out) {
// References to inputs
Eigen::Map<Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> > pts(in_pts, MODEL_PATH_DISTANCE);
Eigen::Map<Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> > std(in_stds, MODEL_PATH_DISTANCE);
Eigen::Map<Eigen::Matrix<float, POLYFIT_DEGREE, 1> > p(out, POLYFIT_DEGREE);
// Build Least Squares equations
Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE> lhs = vander.array().colwise() / std.array();
Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> rhs = pts.array() / std.array();
// Improve numerical stability
Eigen::Matrix<float, POLYFIT_DEGREE, 1> scale = 1. / (lhs.array()*lhs.array()).sqrt().colwise().sum();
lhs = lhs * scale.asDiagonal();
// Solve inplace
Eigen::ColPivHouseholderQR<Eigen::Ref<Eigen::MatrixXf> > qr(lhs);
p = qr.solve(rhs);
// Apply scale to output
p = p.transpose() * scale.asDiagonal();
}