| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#!/usr/bin/env python3
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import sys
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import numpy as np
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import sympy as sp
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from selfdrive.locationd.models.constants import ObservationKind
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from rednose.helpers.ekf_sym import EKF_sym, gen_code
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from rednose.helpers.lst_sq_computer import LstSqComputer
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from rednose.helpers.sympy_helpers import euler_rotate, quat_matrix_r, quat_rotate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								EARTH_GM = 3.986005e14  # m^3/s^2 (gravitational constant * mass of earth)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def parse_prr(m):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  from laika.raw_gnss import GNSSMeasurement
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  sat_pos_vel_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                  m[GNSSMeasurement.SAT_VEL]))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  R_i = np.atleast_2d(m[GNSSMeasurement.PRR_STD]**2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  z_i = m[GNSSMeasurement.PRR]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  return z_i, R_i, sat_pos_vel_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def parse_pr(m):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  from laika.raw_gnss import GNSSMeasurement
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  pseudorange = m[GNSSMeasurement.PR]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  pseudorange_stdev = m[GNSSMeasurement.PR_STD]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  sat_pos_freq_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                   np.array([m[GNSSMeasurement.GLONASS_FREQ]])))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  z_i = np.atleast_1d(pseudorange)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  R_i = np.atleast_2d(pseudorange_stdev**2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  return z_i, R_i, sat_pos_freq_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class States():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ECEF_POS = slice(0, 3)  # x, y and z in ECEF in meters
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ECEF_ORIENTATION = slice(3, 7)  # quat for orientation of phone in ecef
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ECEF_VELOCITY = slice(7, 10)  # ecef velocity in m/s
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ANGULAR_VELOCITY = slice(10, 13)  # roll, pitch and yaw rates in device frame in radians/s
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  CLOCK_BIAS = slice(13, 14)  # clock bias in light-meters,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  CLOCK_DRIFT = slice(14, 15)  # clock drift in light-meters/s,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GYRO_BIAS = slice(15, 18)  # roll, pitch and yaw biases
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ODO_SCALE = slice(18, 19)  # odometer scale
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ACCELERATION = slice(19, 22)  # Acceleration in device frame in m/s**2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  FOCAL_SCALE = slice(22, 23)  # focal length scale
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  IMU_OFFSET = slice(23, 26)  # imu offset angles in radians
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GLONASS_BIAS = slice(26, 27)  # GLONASS bias in m expressed as bias + freq_num*freq_slope
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GLONASS_FREQ_SLOPE = slice(27, 28)  # GLONASS bias in m expressed as bias + freq_num*freq_slope
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  CLOCK_ACCELERATION = slice(28, 29)  # clock acceleration in light-meters/s**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  ACCELEROMETER_SCALE = slice(29, 30)  # scale of mems accelerometer
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # Error-state has different slices because it is an ESKF
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ECEF_POS_ERR = slice(0, 3)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ECEF_ORIENTATION_ERR = slice(3, 6)  # euler angles for orientation error
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ECEF_VELOCITY_ERR = slice(6, 9)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ANGULAR_VELOCITY_ERR = slice(9, 12)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  CLOCK_BIAS_ERR = slice(12, 13)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  CLOCK_DRIFT_ERR = slice(13, 14)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GYRO_BIAS_ERR = slice(14, 17)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ODO_SCALE_ERR = slice(17, 18)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  ACCELERATION_ERR = slice(18, 21)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  FOCAL_SCALE_ERR = slice(21, 22)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  IMU_OFFSET_ERR = slice(22, 25)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GLONASS_BIAS_ERR = slice(25, 26)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GLONASS_FREQ_SLOPE_ERR = slice(26, 27)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  CLOCK_ACCELERATION_ERR = slice(27, 28)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  ACCELEROMETER_SCALE_ERR = slice(28, 29)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class LocKalman():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  name = "loc"
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  x_initial = np.array([0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        1, 0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        1,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        1,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        0, 0,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                        0,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        1], dtype=np.float64)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # state covariance
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  P_initial = np.diag([1e16, 1e16, 1e16,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       10**2, 10**2, 10**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       10**2, 10**2, 10**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       1**2, 1**2, 1**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                       1e14, (100)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       0.05**2, 0.05**2, 0.05**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       0.02**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                       2**2, 2**2, 2**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       0.01**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       (0.01)**2, (0.01)**2, (0.01)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       10**2, 1**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                       0.2**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                       0.05**2])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # process noise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  Q = np.diag([0.03**2, 0.03**2, 0.03**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								               0.0**2, 0.0**2, 0.0**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               0.0**2, 0.0**2, 0.0**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               0.1**2, 0.1**2, 0.1**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               (.1)**2, (0.0)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               (0.02 / 100)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               3**2, 3**2, 3**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               0.001**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               (0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               (.1)**2, (.01)**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								               0.005**2,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               (0.02 / 100)**2])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  # measurements that need to pass mahalanobis distance outlier rejector
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  maha_test_kinds = [ObservationKind.ORB_FEATURES]  # , ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  dim_augment = 7
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  dim_augment_err = 6
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  @staticmethod
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def generate_code(generated_dir, N=4):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim_augment = LocKalman.dim_augment
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim_augment_err = LocKalman.dim_augment_err
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim_main = LocKalman.x_initial.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim_main_err = LocKalman.P_initial.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim_state = dim_main + dim_augment * N
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim_state_err = dim_main_err + dim_augment_err * N
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    maha_test_kinds = LocKalman.maha_test_kinds
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    name = f"{LocKalman.name}_{N}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # make functions and jacobians with sympy
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # state variables
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_sym = sp.MatrixSymbol('state', dim_state, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state = sp.Matrix(state_sym)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    x, y, z = state[States.ECEF_POS, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    q = state[States.ECEF_ORIENTATION, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    v = state[States.ECEF_VELOCITY, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    vx, vy, vz = v
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    omega = state[States.ANGULAR_VELOCITY, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    vroll, vpitch, vyaw = omega
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    cb = state[States.CLOCK_BIAS, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cd = state[States.CLOCK_DRIFT, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    odo_scale = state[States.ODO_SCALE, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    acceleration = state[States.ACCELERATION, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    focal_scale = state[States.FOCAL_SCALE, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    imu_angles = state[States.IMU_OFFSET, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    imu_angles[0, 0] = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    imu_angles[2, 0] = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    glonass_bias = state[States.GLONASS_BIAS, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    glonass_freq_slope = state[States.GLONASS_FREQ_SLOPE, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ca = state[States.CLOCK_ACCELERATION, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    accel_scale = state[States.ACCELEROMETER_SCALE, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dt = sp.Symbol('dt')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # calibration and attitude rotation matrices
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    quat_rot = quat_rotate(*q)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Got the quat predict equations from here
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # A New Quaternion-Based Kalman Filter for
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Real-Time Attitude Estimation Using the Two-Step
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Geometrically-Intuitive Correction Algorithm
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                         [vroll, 0, vyaw, -vpitch],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                         [vpitch, -vyaw, 0, vroll],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                         [vyaw, vpitch, -vroll, 0]])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    q_dot = A * q
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Time derivative of the state as a function of state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_dot = sp.Matrix(np.zeros((dim_state, 1)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_dot[States.ECEF_POS, :] = v
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_dot[States.ECEF_ORIENTATION, :] = q_dot
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    state_dot[States.CLOCK_BIAS, :] = cd
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_dot[States.CLOCK_DRIFT, :] = ca
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Basic descretization, 1st order intergrator
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Can be pretty bad if dt is big
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    f_sym = state + dt * state_dot
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err = sp.Matrix(state_err_sym)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    quat_err = state_err[States.ECEF_ORIENTATION_ERR, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    v_err = state_err[States.ECEF_VELOCITY_ERR, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    cd_err = state_err[States.CLOCK_DRIFT_ERR, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    acceleration_err = state_err[States.ACCELERATION_ERR, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    ca_err = state_err[States.CLOCK_ACCELERATION_ERR, :]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Time derivative of the state error as a function of state error and state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err_dot[States.ECEF_POS_ERR, :] = v_err
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    state_err_dot[States.CLOCK_BIAS_ERR, :] = cd_err
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state_err_dot[States.CLOCK_DRIFT_ERR, :] = ca_err
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    f_err_sym = state_err + dt * state_err_dot
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # convenient indexing
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # q idxs are for quats and p idxs are for other
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    q_idxs = [[3, dim_augment]] + [[dim_main + n * dim_augment + 3, dim_main + (n + 1) * dim_augment] for n in range(N)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    q_err_idxs = [[3, dim_augment_err]] + [[dim_main_err + n * dim_augment_err + 3, dim_main_err + (n + 1) * dim_augment_err] for n in range(N)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    p_idxs = [[0, 3]] + [[dim_augment, dim_main]] + [[dim_main + n * dim_augment, dim_main + n * dim_augment + 3] for n in range(N)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    p_err_idxs = [[0, 3]] + [[dim_augment_err, dim_main_err]] + [[dim_main_err + n * dim_augment_err, dim_main_err + n * dim_augment_err + 3] for n in range(N)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Observation matrix modifier
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      H_mod_sym[p_idx[0]:p_idx[1], p_err_idx[0]:p_err_idx[1]] = np.eye(p_idx[1] - p_idx[0])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      H_mod_sym[q_idx[0]:q_idx[1], q_err_idx[0]:q_err_idx[1]] = 0.5 * quat_matrix_r(state[q_idx[0]:q_idx[1]])[:, 1:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # these error functions are defined so that say there
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # is a nominal x and true x:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # true x = err_function(nominal x, delta x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # delta x = inv_err_function(nominal x, true x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    nom_x = sp.MatrixSymbol('nom_x', dim_state, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    true_x = sp.MatrixSymbol('true_x', dim_state, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    err_function_sym = sp.Matrix(np.zeros((dim_state, 1)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      delta_quat = sp.Matrix(np.ones((4)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[q_err_idx[0]: q_err_idx[1], :])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      err_function_sym[q_idx[0]:q_idx[1], 0] = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]) * delta_quat
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      err_function_sym[p_idx[0]:p_idx[1], :] = sp.Matrix(nom_x[p_idx[0]:p_idx[1], :] + delta_x[p_err_idx[0]:p_err_idx[1], :])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      inv_err_function_sym[p_err_idx[0]:p_err_idx[1], 0] = sp.Matrix(-nom_x[p_idx[0]:p_idx[1], 0] + true_x[p_idx[0]:p_idx[1], 0])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      delta_quat = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]).T * true_x[q_idx[0]:q_idx[1], 0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      inv_err_function_sym[q_err_idx[0]:q_err_idx[1], 0] = sp.Matrix(2 * delta_quat[1:])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    eskf_params = [[err_function_sym, nom_x, delta_x],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                   [inv_err_function_sym, nom_x, true_x],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                   H_mod_sym, f_err_sym, state_err_sym]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Observation functions
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # extra args
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sat_pos_freq_sym = sp.MatrixSymbol('sat_pos', 4, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sat_pos_vel_sym = sp.MatrixSymbol('sat_pos_vel', 6, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # sat_los_sym = sp.MatrixSymbol('sat_los', 3, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    orb_epos_sym = sp.MatrixSymbol('orb_epos_sym', 3, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # expand extra args
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sat_x, sat_y, sat_z, glonass_freq = sat_pos_freq_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sat_vx, sat_vy, sat_vz = sat_pos_vel_sym[3:]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # los_x, los_y, los_z = sat_los_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    orb_x, orb_y, orb_z = orb_epos_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_pseudorange_sym = sp.Matrix([
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      sp.sqrt(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        (x - sat_x)**2 +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        (y - sat_y)**2 +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        (z - sat_z)**2
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      ) + cb[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_pseudorange_glonass_sym = sp.Matrix([
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      sp.sqrt(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        (x - sat_x)**2 +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        (y - sat_y)**2 +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        (z - sat_z)**2
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      ) + cb[0] + glonass_bias[0] + glonass_freq_slope[0] * glonass_freq
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z]))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                        los_vector[1] * (sat_vy - vy) +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                        los_vector[2] * (sat_vz - vz) +
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                                        cd[0]])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    imu_rot = euler_rotate(*imu_angles)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_gyro_sym = imu_rot * sp.Matrix([vroll + roll_bias,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                      vpitch + pitch_bias,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                      vyaw + yaw_bias])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    pos = sp.Matrix([x, y, z])
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # add 1 for stability, prevent division by 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2 + 1)**(3.0 / 2.0))) * pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_acc_sym = imu_rot * (accel_scale[0] * (gravity + acceleration))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    speed = sp.sqrt(vx**2 + vy**2 + vz**2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_speed_sym = sp.Matrix([speed * odo_scale])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # orb stuff
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    orb_pos_sym = sp.Matrix([orb_x - x, orb_y - y, orb_z - z])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    orb_pos_rot_sym = quat_rot.T * orb_pos_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    s = orb_pos_rot_sym[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_orb_point_sym = sp.Matrix([(1 / s) * (orb_pos_rot_sym[1]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                (1 / s) * (orb_pos_rot_sym[2])])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_pos_sym = sp.Matrix([x, y, z])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_imu_frame_sym = sp.Matrix(imu_angles)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    h_relative_motion = sp.Matrix(quat_rot.T * v)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_gyro_sym, ObservationKind.PHONE_GYRO, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_phone_rot_sym, ObservationKind.NO_ROT, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_acc_sym, ObservationKind.PHONE_ACCEL, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_pos_sym, ObservationKind.ECEF_POS, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_imu_frame_sym, ObservationKind.IMU_FRAME, None],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               [h_orb_point_sym, ObservationKind.ORB_POINT, orb_epos_sym]]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # MSCKF configuration
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if N > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      # experimentally found this is correct value for imx298 with 910 focal length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      # this is a variable so it can change with focus, but we disregard that for now
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      focal_scale = 1.01
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      # Add observation functions for orb feature tracks
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      track_epos_sym = sp.MatrixSymbol('track_epos_sym', 3, 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      track_x, track_y, track_z = track_epos_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      h_track_sym = sp.Matrix(np.zeros(((1 + N) * 2, 1)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      track_pos_rot_sym = quat_rot.T * track_pos_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      h_track_sym[-2:, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                      focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      h_msckf_test_sym = sp.Matrix(np.zeros(((1 + N) * 3, 1)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      h_msckf_test_sym[-3:, :] = sp.Matrix([track_x - x, track_y - y, track_z - z])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      for n in range(N):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        idx = dim_main + n * dim_augment
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # err_idx = dim_main_err + n * dim_augment_err  # FIXME: Why is this not used?
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x, y, z = state[idx:idx + 3]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        q = state[idx + 3:idx + 7]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        quat_rot = quat_rotate(*q)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        track_pos_rot_sym = quat_rot.T * track_pos_sym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        h_track_sym[n * 2:n * 2 + 2, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                                     focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        h_msckf_test_sym[n * 3:n * 3 + 3, :] = sp.Matrix([track_x - x, track_y - y, track_z - z])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      obs_eqs.append([h_msckf_test_sym, ObservationKind.MSCKF_TEST, track_epos_sym])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      obs_eqs.append([h_track_sym, ObservationKind.ORB_FEATURES, track_epos_sym])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      obs_eqs.append([h_track_sym, ObservationKind.FEATURE_TRACK_TEST, track_epos_sym])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      msckf_params = [dim_main, dim_augment, dim_main_err, dim_augment_err, N, [ObservationKind.MSCKF_TEST, ObservationKind.ORB_FEATURES]]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      msckf_params = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params, msckf_params, maha_test_kinds)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def __init__(self, generated_dir, N=4, max_tracks=3000):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    name = f"{self.name}_{N}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                      ObservationKind.NO_ROT: np.diag([0.0025**2, 0.0025**2, 0.0025**2]),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # MSCKF stuff
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.N = N
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.dim_main = LocKalman.x_initial.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.dim_main_err = LocKalman.P_initial.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.dim_state = self.dim_main + self.dim_augment * self.N
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.dim_state_err = self.dim_main_err + self.dim_augment_err * self.N
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if self.N > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      x_initial, P_initial, Q = self.pad_augmented(self.x_initial, self.P_initial, self.Q)  # lgtm[py/mismatched-multiple-assignment] pylint: disable=unbalanced-tuple-unpacking
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      self.computer = LstSqComputer(generated_dir, N)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      self.max_tracks = max_tracks
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    self.quaternion_idxs = [3,] + [(self.dim_main + i*self.dim_augment + 3)for i in range(self.N)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # init filter
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.filter = EKF_sym(generated_dir, name, Q, x_initial, P_initial, self.dim_main, self.dim_main_err,
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                          N, self.dim_augment, self.dim_augment_err, self.maha_test_kinds, self.quaternion_idxs)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def x(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.state()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def t(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    return self.filter.get_filter_time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def P(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.covs()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict(self, t):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict(t)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def rts_smooth(self, estimates):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.rts_smooth(estimates, norm_quats=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def pad_augmented(self, x, P, Q=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if x.shape[0] == self.dim_main and self.N > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      x = np.pad(x, (0, self.N * self.dim_augment), mode='constant')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      x[self.dim_main + 3::7] = 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if P.shape[0] == self.dim_main_err and self.N > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      P = np.pad(P, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      P[self.dim_main_err:, self.dim_main_err:] = 10e20 * np.eye(self.dim_augment_err * self.N)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if Q is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      return x, P
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      Q = np.pad(Q, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      return x, P, Q
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if covs_diag is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      P = np.diag(covs_diag)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif covs is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      P = covs
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      P = self.filter.covs()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state, P = self.pad_augmented(state, P)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.filter.init_state(state, P, filter_time)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_observe(self, t, kind, data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if len(data) > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      data = np.atleast_2d(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_odo_trans(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.CAMERA_ODO_ROTATION:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_odo_rot(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_pseudorange(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_pseudorange_rate(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.ORB_POINT:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_orb(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.ORB_FEATURES:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_orb_features(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.MSCKF_TEST:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_msckf_test(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif kind == ObservationKind.ODOMETRIC_SPEED:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.predict_and_update_odo_speed(data, t, kind)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Normalize quats
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    quat_norm = np.linalg.norm(self.filter.state()[3:7])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Should not continue if the quats behave this weirdly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if not 0.1 < quat_norm < 10:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      raise RuntimeError("Sir! The filter's gone all wobbly!")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return r
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def get_R(self, kind, n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    obs_noise = self.obs_noise[kind]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    dim = obs_noise.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((n, dim, dim))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i in range(n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      R[i, :, :] = obs_noise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return R
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_pseudorange(self, meas, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(meas), 1, 1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sat_pos_freq = np.zeros((len(meas), 4))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = np.zeros((len(meas), 1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, m in enumerate(meas):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      z_i, R_i, sat_pos_freq_i = parse_pr(m)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      sat_pos_freq[i, :] = sat_pos_freq_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      z[i, :] = z_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      R[i, :, :] = R_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_pseudorange_rate(self, meas, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(meas), 1, 1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = np.zeros((len(meas), 1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sat_pos_vel = np.zeros((len(meas), 6))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, m in enumerate(meas):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      z_i, R_i, sat_pos_vel_i = parse_prr(m)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      sat_pos_vel[i] = sat_pos_vel_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      R[i, :, :] = R_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      z[i, :] = z_i
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_orb(self, orb, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    true_pos = orb[:, 2:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = orb[:, :2]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(orb), 2, 2))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, _ in enumerate(z):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      R[i, :, :] = np.diag([10**2, 10**2])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict_and_update_batch(t, kind, z, R, true_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_odo_speed(self, speed, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = np.array(speed)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(speed), 1, 1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, _ in enumerate(z):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      R[i, :, :] = np.diag([0.2**2])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict_and_update_batch(t, kind, z, R)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_odo_trans(self, trans, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = trans[:, :3]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(trans), 3, 3))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, _ in enumerate(z):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        R[i, :, :] = np.diag(trans[i, 3:]**2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict_and_update_batch(t, kind, z, R)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_odo_rot(self, rot, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = rot[:, :3]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(rot), 3, 3))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, _ in enumerate(z):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        R[i, :, :] = np.diag(rot[i, 3:]**2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return self.filter.predict_and_update_batch(t, kind, z, R)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_orb_features(self, tracks, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    k = 2 * (self.N + 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(tracks), k, k))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = np.zeros((len(tracks), k))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ecef_pos = np.zeros((len(tracks), 3))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ecef_pos[:] = np.nan
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    poses = self.x[self.dim_main:].reshape((-1, 7))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    times = tracks.reshape((len(tracks), self.N + 1, 4))[:, :, 0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    good_counter = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if times.any() and np.allclose(times[0, :-1], self.filter.get_augment_times(), rtol=1e-6):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      for i, track in enumerate(tracks):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        img_positions = track.reshape((self.N + 1, 4))[:, 2:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # TODO not perfect as last pose not used
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        ecef_pos[i] = self.computer.compute_pos(poses, img_positions[:-1])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z[i] = img_positions.flatten()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        R[i, :, :] = np.diag([0.005**2] * (k))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if np.isfinite(ecef_pos[i][0]):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								          good_counter += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								          if good_counter > self.max_tracks:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    good_idxs = np.all(np.isfinite(ecef_pos), axis=1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # have to do some weird stuff here to keep
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # to have the observations input from mesh3d
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # consistent with the outputs of the filter
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Probably should be replaced, not sure how.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ret = self.filter.predict_and_update_batch(t, kind, z[good_idxs], R[good_idxs], ecef_pos[good_idxs], augment=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if ret is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      return
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    y_full = np.zeros((z.shape[0], z.shape[1] - 3))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if sum(good_idxs) > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y_full[good_idxs] = np.array(ret[6])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ret = ret[:6] + (y_full, z, ecef_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return ret
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def predict_and_update_msckf_test(self, test_data, t, kind):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    assert self.N > 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    z = test_data
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    R = np.zeros((len(test_data), len(z[0]), len(z[0])))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ecef_pos = [self.x[:3]]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, _ in enumerate(z):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      R[i, :, :] = np.diag([0.1**2] * len(z[0]))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ret = self.filter.predict_and_update_batch(t, kind, z, R, ecef_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    self.filter.augment()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return ret
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def maha_test_pseudorange(self, x, P, meas, kind, maha_thresh=.3):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    bools = []
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    for m in meas:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      z, R, sat_pos_freq = parse_pr(m)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_freq, maha_thresh=maha_thresh))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return np.array(bools)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  def maha_test_pseudorange_rate(self, x, P, meas, kind, maha_thresh=.999):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    bools = []
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    for m in meas:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      z, R, sat_pos_vel = parse_prr(m)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_vel, maha_thresh=maha_thresh))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return np.array(bools)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == "__main__":
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  N = int(sys.argv[1].split("_")[-1])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  generated_dir = sys.argv[2]
							 | 
						
					
						
							| 
								
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  LocKalman.generate_code(generated_dir, N=N)
							 |