remove old locationd stuff

old-commit-hash: 64a2d0c3e9
vw-mqb-aeb
Willem Melching 5 years ago
parent 2d69a5a335
commit b26d45ce04
  1. 206
      selfdrive/locationd/locationd_local.py
  2. 84
      selfdrive/locationd/params_learner.py

@ -1,206 +0,0 @@
#!/usr/bin/env python3
import os
import zmq
import math
import json
import numpy as np
from bisect import bisect_right
from cereal import car
from common.params import Params
from common.numpy_fast import clip
import cereal.messaging as messaging
from selfdrive.swaglog import cloudlog
from selfdrive.controls.lib.vehicle_model import VehicleModel
from cereal.services import service_list
from selfdrive.locationd.kalman.loc_local_kf import LocLocalKalman
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
from selfdrive.locationd.params_learner import ParamsLearner
DEBUG = False
kf = LocLocalKalman() # Make sure that model is generated on import time
LEARNING_RATE = 3
class Localizer():
def __init__(self, disabled_logs=None, dog=None):
self.kf = LocLocalKalman()
self.reset_kalman()
self.sensor_data_t = 0.0
self.max_age = .2 # seconds
self.calibration_valid = False
if disabled_logs is None:
self.disabled_logs = list()
else:
self.disabled_logs = disabled_logs
def reset_kalman(self):
self.filter_time = None
self.observation_buffer = []
self.converter = None
self.speed_counter = 0
self.sensor_counter = 0
def liveLocationMsg(self, time):
fix = messaging.log.KalmanOdometry.new_message()
predicted_state = self.kf.x
fix.trans = [float(predicted_state[0]), float(predicted_state[1]), float(predicted_state[2])]
fix.rot = [float(predicted_state[3]), float(predicted_state[4]), float(predicted_state[5])]
return fix
def update_kalman(self, time, kind, meas):
idx = bisect_right([x[0] for x in self.observation_buffer], time)
self.observation_buffer.insert(idx, (time, kind, meas))
while self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
self.kf.predict_and_observe(*self.observation_buffer.pop(0))
def handle_cam_odo(self, log, current_time):
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_ROTATION, np.concatenate([log.cameraOdometry.rot,
log.cameraOdometry.rotStd]))
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_TRANSLATION, np.concatenate([log.cameraOdometry.trans,
log.cameraOdometry.transStd]))
def handle_controls_state(self, log, current_time):
self.speed_counter += 1
if self.speed_counter % 5 == 0:
self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, np.array([log.controlsState.vEgo]))
def handle_sensors(self, log, current_time):
for sensor_reading in log.sensorEvents:
# TODO does not yet account for double sensor readings in the log
if sensor_reading.type == 4:
self.sensor_counter += 1
if self.sensor_counter % LEARNING_RATE == 0:
self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-sensor_reading.gyro.v[2], -sensor_reading.gyro.v[1], -sensor_reading.gyro.v[0]])
def handle_log(self, log):
current_time = 1e-9 * log.logMonoTime
typ = log.which
if typ in self.disabled_logs:
return
if typ == "sensorEvents":
self.sensor_data_t = current_time
self.handle_sensors(log, current_time)
elif typ == "controlsState":
self.handle_controls_state(log, current_time)
elif typ == "cameraOdometry":
self.handle_cam_odo(log, current_time)
def locationd_thread(gctx, addr, disabled_logs):
poller = zmq.Poller()
controls_state_socket = messaging.sub_sock('controlsState', poller, addr=addr, conflate=True)
sensor_events_socket = messaging.sub_sock('sensorEvents', poller, addr=addr, conflate=True)
camera_odometry_socket = messaging.sub_sock('cameraOdometry', poller, addr=addr, conflate=True)
kalman_odometry_socket = messaging.pub_sock('kalmanOdometry')
live_parameters_socket = messaging.pub_sock('liveParameters')
params_reader = Params()
cloudlog.info("Parameter learner is waiting for CarParams")
CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
VM = VehicleModel(CP)
cloudlog.info("Parameter learner got CarParams: %s" % CP.carFingerprint)
params = params_reader.get("LiveParameters")
# Check if car model matches
if params is not None:
params = json.loads(params)
if (params.get('carFingerprint', None) != CP.carFingerprint) or (params.get('carVin', CP.carVin) != CP.carVin):
cloudlog.info("Parameter learner found parameters for wrong car.")
params = None
if params is None:
params = {
'carFingerprint': CP.carFingerprint,
'carVin': CP.carVin,
'angleOffsetAverage': 0.0,
'stiffnessFactor': 1.0,
'steerRatio': VM.sR,
}
params_reader.put("LiveParameters", json.dumps(params))
cloudlog.info("Parameter learner resetting to default values")
cloudlog.info("Parameter starting with: %s" % str(params))
localizer = Localizer(disabled_logs=disabled_logs)
learner = ParamsLearner(VM,
angle_offset=params['angleOffsetAverage'],
stiffness_factor=params['stiffnessFactor'],
steer_ratio=params['steerRatio'],
learning_rate=LEARNING_RATE)
i = 1
while True:
for socket, event in poller.poll(timeout=1000):
log = messaging.recv_one(socket)
localizer.handle_log(log)
if socket is controls_state_socket:
if not localizer.kf.t:
continue
if i % LEARNING_RATE == 0:
# controlsState is not updating the Kalman Filter, so update KF manually
localizer.kf.predict(1e-9 * log.logMonoTime)
predicted_state = localizer.kf.x
yaw_rate = -float(predicted_state[5])
steering_angle = math.radians(log.controlsState.angleSteers)
params_valid = learner.update(yaw_rate, log.controlsState.vEgo, steering_angle)
log_t = 1e-9 * log.logMonoTime
sensor_data_age = log_t - localizer.sensor_data_t
params = messaging.new_message()
params.init('liveParameters')
params.liveParameters.valid = bool(params_valid)
params.liveParameters.sensorValid = bool(sensor_data_age < 5.0)
params.liveParameters.angleOffset = float(math.degrees(learner.ao))
params.liveParameters.angleOffsetAverage = float(math.degrees(learner.slow_ao))
params.liveParameters.stiffnessFactor = float(learner.x)
params.liveParameters.steerRatio = float(learner.sR)
live_parameters_socket.send(params.to_bytes())
if i % 6000 == 0: # once a minute
params = learner.get_values()
params['carFingerprint'] = CP.carFingerprint
params['carVin'] = CP.carVin
params_reader.put("LiveParameters", json.dumps(params))
params_reader.put("ControlsParams", json.dumps({'angle_model_bias': log.controlsState.angleModelBias}))
i += 1
elif socket is camera_odometry_socket:
msg = messaging.new_message()
msg.init('kalmanOdometry')
msg.logMonoTime = log.logMonoTime
msg.kalmanOdometry = localizer.liveLocationMsg(log.logMonoTime * 1e-9)
kalman_odometry_socket.send(msg.to_bytes())
elif socket is sensor_events_socket:
pass
def main(gctx=None, addr="127.0.0.1"):
IN_CAR = os.getenv("IN_CAR", False)
disabled_logs = os.getenv("DISABLED_LOGS", "").split(",")
# No speed for now
disabled_logs.append('controlsState')
if IN_CAR:
addr = "192.168.5.11"
locationd_thread(gctx, addr, disabled_logs)
if __name__ == "__main__":
main()

@ -1,84 +0,0 @@
import math
from common.numpy_fast import clip
MAX_ANGLE_OFFSET = math.radians(10.)
MAX_ANGLE_OFFSET_TH = math.radians(9.)
MIN_STIFFNESS = 0.5
MAX_STIFFNESS = 2.0
MIN_SR = 0.5
MAX_SR = 2.0
MIN_SR_TH = 0.55
MAX_SR_TH = 1.9
DEBUG = False
class ParamsLearner():
def __init__(self, VM, angle_offset=0., stiffness_factor=1.0, steer_ratio=None, learning_rate=1.0):
self.VM = VM
self.ao = math.radians(angle_offset)
self.slow_ao = math.radians(angle_offset)
self.x = stiffness_factor
self.sR = VM.sR if steer_ratio is None else steer_ratio
self.MIN_SR = MIN_SR * self.VM.sR
self.MAX_SR = MAX_SR * self.VM.sR
self.MIN_SR_TH = MIN_SR_TH * self.VM.sR
self.MAX_SR_TH = MAX_SR_TH * self.VM.sR
self.alpha1 = 0.01 * learning_rate
self.alpha2 = 0.0005 * learning_rate
self.alpha3 = 0.1 * learning_rate
self.alpha4 = 1.0 * learning_rate
def get_values(self):
return {
'angleOffsetAverage': math.degrees(self.slow_ao),
'stiffnessFactor': self.x,
'steerRatio': self.sR,
}
def update(self, psi, u, sa):
cF0 = self.VM.cF
cR0 = self.VM.cR
aR = self.VM.aR
aF = self.VM.aF
l = self.VM.l
m = self.VM.m
x = self.x
ao = self.ao
sR = self.sR
# Gradient descent: learn angle offset, tire stiffness and steer ratio.
if u > 10.0 and abs(math.degrees(sa)) < 15.:
self.ao -= self.alpha1 * 2.0*cF0*cR0*l*u*x*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**2*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**2)
ao = self.slow_ao
self.slow_ao -= self.alpha2 * 2.0*cF0*cR0*l*u*x*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**2*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**2)
self.x -= self.alpha3 * -2.0*cF0*cR0*l*m*u**3*(ao - sa)*(aF*cF0 - aR*cR0)*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**2*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**3)
self.sR -= self.alpha4 * -2.0*cF0*cR0*l*u*x*(ao - sa)*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**3*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**2)
if DEBUG:
# s1 = "Measured yaw rate % .6f" % psi
# ao = 0.
# s2 = "Uncompensated yaw % .6f" % (1.0*u*(-ao + sa)/(l*sR*(1 - m*u**2*(aF*cF0*x - aR*cR0*x)/(cF0*cR0*l**2*x**2))))
# instant_ao = aF*m*psi*sR*u/(cR0*l*x) - aR*m*psi*sR*u/(cF0*l*x) - l*psi*sR/u + sa
s4 = "Instant AO: % .6f Avg. AO % .6f" % (math.degrees(self.ao), math.degrees(self.slow_ao))
s5 = "Stiffnes: % .6f x" % self.x
s6 = "sR: %.4f" % self.sR
print("{0} {1} {2}".format(s4, s5, s6))
self.ao = clip(self.ao, -MAX_ANGLE_OFFSET, MAX_ANGLE_OFFSET)
self.slow_ao = clip(self.slow_ao, -MAX_ANGLE_OFFSET, MAX_ANGLE_OFFSET)
self.x = clip(self.x, MIN_STIFFNESS, MAX_STIFFNESS)
self.sR = clip(self.sR, self.MIN_SR, self.MAX_SR)
# don't check stiffness for validity, as it can change quickly if sR is off
valid = abs(self.slow_ao) < MAX_ANGLE_OFFSET_TH and \
self.sR > self.MIN_SR_TH and self.sR < self.MAX_SR_TH
return valid
Loading…
Cancel
Save