|  |  |  | @ -24,15 +24,17 @@ SOURCES = ['lead0', 'lead1', 'cruise'] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | X_DIM = 3 | 
			
		
	
		
			
				
					|  |  |  |  | U_DIM = 1 | 
			
		
	
		
			
				
					|  |  |  |  | COST_E_DIM = 4 | 
			
		
	
		
			
				
					|  |  |  |  | PARAM_DIM= 4 | 
			
		
	
		
			
				
					|  |  |  |  | COST_E_DIM = 5 | 
			
		
	
		
			
				
					|  |  |  |  | COST_DIM = COST_E_DIM + 1 | 
			
		
	
		
			
				
					|  |  |  |  | CONSTR_DIM = 4 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | X_EGO_OBSTACLE_COST = 3. | 
			
		
	
		
			
				
					|  |  |  |  | V_EGO_COST = 0. | 
			
		
	
		
			
				
					|  |  |  |  | X_EGO_COST = 0. | 
			
		
	
		
			
				
					|  |  |  |  | V_EGO_COST = 0. | 
			
		
	
		
			
				
					|  |  |  |  | A_EGO_COST = 0. | 
			
		
	
		
			
				
					|  |  |  |  | J_EGO_COST = 10. | 
			
		
	
		
			
				
					|  |  |  |  | J_EGO_COST = 5.0 | 
			
		
	
		
			
				
					|  |  |  |  | A_CHANGE_COST = .5 | 
			
		
	
		
			
				
					|  |  |  |  | DANGER_ZONE_COST = 100. | 
			
		
	
		
			
				
					|  |  |  |  | CRASH_DISTANCE = .5 | 
			
		
	
		
			
				
					|  |  |  |  | LIMIT_COST = 1e6 | 
			
		
	
	
		
			
				
					|  |  |  | @ -85,7 +87,8 @@ def gen_long_model(): | 
			
		
	
		
			
				
					|  |  |  |  |   x_obstacle = SX.sym('x_obstacle') | 
			
		
	
		
			
				
					|  |  |  |  |   a_min = SX.sym('a_min') | 
			
		
	
		
			
				
					|  |  |  |  |   a_max = SX.sym('a_max') | 
			
		
	
		
			
				
					|  |  |  |  |   model.p = vertcat(a_min, a_max, x_obstacle) | 
			
		
	
		
			
				
					|  |  |  |  |   prev_a = SX.sym('prev_a') | 
			
		
	
		
			
				
					|  |  |  |  |   model.p = vertcat(a_min, a_max, x_obstacle, prev_a) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   # dynamics model | 
			
		
	
		
			
				
					|  |  |  |  |   f_expl = vertcat(v_ego, a_ego, j_ego) | 
			
		
	
	
		
			
				
					|  |  |  | @ -118,6 +121,7 @@ def gen_long_mpc_solver(): | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   a_min, a_max = ocp.model.p[0], ocp.model.p[1] | 
			
		
	
		
			
				
					|  |  |  |  |   x_obstacle = ocp.model.p[2] | 
			
		
	
		
			
				
					|  |  |  |  |   prev_a = ocp.model.p[3] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.cost.yref = np.zeros((COST_DIM, )) | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.cost.yref_e = np.zeros((COST_E_DIM, )) | 
			
		
	
	
		
			
				
					|  |  |  | @ -132,6 +136,7 @@ def gen_long_mpc_solver(): | 
			
		
	
		
			
				
					|  |  |  |  |            x_ego, | 
			
		
	
		
			
				
					|  |  |  |  |            v_ego, | 
			
		
	
		
			
				
					|  |  |  |  |            a_ego, | 
			
		
	
		
			
				
					|  |  |  |  |            20*(a_ego - prev_a), | 
			
		
	
		
			
				
					|  |  |  |  |            j_ego] | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.model.cost_y_expr = vertcat(*costs) | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.model.cost_y_expr_e = vertcat(*costs[:-1]) | 
			
		
	
	
		
			
				
					|  |  |  | @ -148,7 +153,7 @@ def gen_long_mpc_solver(): | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   x0 = np.zeros(X_DIM) | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.constraints.x0 = x0 | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.parameter_values = np.array([-1.2, 1.2, 0.0]) | 
			
		
	
		
			
				
					|  |  |  |  |   ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   # We put all constraint cost weights to 0 and only set them at runtime | 
			
		
	
		
			
				
					|  |  |  |  |   cost_weights = np.zeros(CONSTR_DIM) | 
			
		
	
	
		
			
				
					|  |  |  | @ -198,6 +203,7 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |     self.solver = AcadosOcpSolverFast('long', N, EXPORT_DIR) | 
			
		
	
		
			
				
					|  |  |  |  |     self.v_solution = [0.0 for i in range(N+1)] | 
			
		
	
		
			
				
					|  |  |  |  |     self.a_solution = [0.0 for i in range(N+1)] | 
			
		
	
		
			
				
					|  |  |  |  |     self.prev_a = self.a_solution | 
			
		
	
		
			
				
					|  |  |  |  |     self.j_solution = [0.0 for i in range(N)] | 
			
		
	
		
			
				
					|  |  |  |  |     self.yref = np.zeros((N+1, COST_DIM)) | 
			
		
	
		
			
				
					|  |  |  |  |     for i in range(N): | 
			
		
	
	
		
			
				
					|  |  |  | @ -205,7 +211,7 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |     self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) | 
			
		
	
		
			
				
					|  |  |  |  |     self.x_sol = np.zeros((N+1, X_DIM)) | 
			
		
	
		
			
				
					|  |  |  |  |     self.u_sol = np.zeros((N,1)) | 
			
		
	
		
			
				
					|  |  |  |  |     self.params = np.zeros((N+1,3)) | 
			
		
	
		
			
				
					|  |  |  |  |     self.params = np.zeros((N+1, PARAM_DIM)) | 
			
		
	
		
			
				
					|  |  |  |  |     for i in range(N+1): | 
			
		
	
		
			
				
					|  |  |  |  |       self.solver.set(i, 'x', np.zeros(X_DIM)) | 
			
		
	
		
			
				
					|  |  |  |  |     self.last_cloudlog_t = 0 | 
			
		
	
	
		
			
				
					|  |  |  | @ -222,8 +228,9 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |       self.set_weights_for_lead_policy() | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   def set_weights_for_lead_policy(self): | 
			
		
	
		
			
				
					|  |  |  |  |     W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, J_EGO_COST])) | 
			
		
	
		
			
				
					|  |  |  |  |     W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, A_CHANGE_COST, J_EGO_COST])) | 
			
		
	
		
			
				
					|  |  |  |  |     for i in range(N): | 
			
		
	
		
			
				
					|  |  |  |  |       W[4,4] = A_CHANGE_COST * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0]) | 
			
		
	
		
			
				
					|  |  |  |  |       self.solver.cost_set(i, 'W', W) | 
			
		
	
		
			
				
					|  |  |  |  |     # Setting the slice without the copy make the array not contiguous, | 
			
		
	
		
			
				
					|  |  |  |  |     # causing issues with the C interface. | 
			
		
	
	
		
			
				
					|  |  |  | @ -235,7 +242,7 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |       self.solver.cost_set(i, 'Zl', Zl) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   def set_weights_for_xva_policy(self): | 
			
		
	
		
			
				
					|  |  |  |  |     W = np.asfortranarray(np.diag([0., 10., 1., 10., 1.])) | 
			
		
	
		
			
				
					|  |  |  |  |     W = np.asfortranarray(np.diag([0., 10., 1., 10., 0.0, 1.])) | 
			
		
	
		
			
				
					|  |  |  |  |     for i in range(N): | 
			
		
	
		
			
				
					|  |  |  |  |       self.solver.cost_set(i, 'W', W) | 
			
		
	
		
			
				
					|  |  |  |  |     # Setting the slice without the copy make the array not contiguous, | 
			
		
	
	
		
			
				
					|  |  |  | @ -320,6 +327,7 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |     x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle]) | 
			
		
	
		
			
				
					|  |  |  |  |     self.source = SOURCES[np.argmin(x_obstacles[0])] | 
			
		
	
		
			
				
					|  |  |  |  |     self.params[:,2] = np.min(x_obstacles, axis=1) | 
			
		
	
		
			
				
					|  |  |  |  |     self.params[:,3] = np.copy(self.prev_a) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     self.run() | 
			
		
	
		
			
				
					|  |  |  |  |     if (np.any(lead_xv_0[:,0] - self.x_sol[:,0] < CRASH_DISTANCE) and | 
			
		
	
	
		
			
				
					|  |  |  | @ -339,7 +347,8 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |     self.accel_limit_arr[:,1] = 10. | 
			
		
	
		
			
				
					|  |  |  |  |     x_obstacle = 1e5*np.ones((N+1)) | 
			
		
	
		
			
				
					|  |  |  |  |     self.params = np.concatenate([self.accel_limit_arr, | 
			
		
	
		
			
				
					|  |  |  |  |                              x_obstacle[:,None]], axis=1) | 
			
		
	
		
			
				
					|  |  |  |  |                              x_obstacle[:,None], | 
			
		
	
		
			
				
					|  |  |  |  |                              self.prev_a], axis=1) | 
			
		
	
		
			
				
					|  |  |  |  |     self.run() | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  |  | @ -358,6 +367,8 @@ class LongitudinalMpc(): | 
			
		
	
		
			
				
					|  |  |  |  |     self.a_solution = self.x_sol[:,2] | 
			
		
	
		
			
				
					|  |  |  |  |     self.j_solution = self.u_sol[:,0] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     self.prev_a = interp(T_IDXS + 0.05, T_IDXS, self.a_solution) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     t = sec_since_boot() | 
			
		
	
		
			
				
					|  |  |  |  |     if self.solution_status != 0: | 
			
		
	
		
			
				
					|  |  |  |  |       if t > self.last_cloudlog_t + 5.0: | 
			
		
	
	
		
			
				
					|  |  |  | 
 |