open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

246 lines
9.1 KiB

#!/usr/bin/env python
import os
import zmq
import cv2
import copy
import math
import json
import numpy as np
import selfdrive.messaging as messaging
from selfdrive.swaglog import cloudlog
from selfdrive.services import service_list
from common.params import Params
from common.ffi_wrapper import ffi_wrap
import common.transformations.orientation as orient
from common.transformations.model import model_height, get_camera_frame_from_model_frame
from common.transformations.camera import view_frame_from_device_frame, get_view_frame_from_road_frame, \
eon_intrinsics, get_calib_from_vp, normalize, denormalize, H, W
MIN_SPEED_FILTER = 7 # m/s (~15.5mph)
MAX_YAW_RATE_FILTER = math.radians(3) # per second
FRAMES_NEEDED = 120 # allow to update VP every so many frames
VP_CYCLES_NEEDED = 2
CALIBRATION_CYCLES_NEEDED = FRAMES_NEEDED * VP_CYCLES_NEEDED
DT = 0.1 # nominal time step of 10Hz (orbd_live runs slower on pc)
VP_RATE_LIM = 2. * DT # 2 px/s
VP_INIT = np.array([W/2., H/2.])
EXTERNAL_PATH = os.path.dirname(os.path.abspath(__file__))
VP_VALIDITY_CORNERS = np.array([[-200., -200.], [200., 200.]]) + VP_INIT
GRID_WEIGHT_INIT = 2e6
MAX_LINES = 500 # max lines to avoid over computation
DEBUG = os.getenv("DEBUG") is not None
# Wrap c code for slow grid incrementation
c_header = "\nvoid increment_grid(double *grid, double *lines, long long n);"
c_code = "#define H %d\n" % H
c_code += "#define W %d\n" % W
c_code += "\n" + open(os.path.join(EXTERNAL_PATH, "get_vp.c")).read()
ffi, lib = ffi_wrap('get_vp', c_code, c_header)
class Calibration:
UNCALIBRATED = 0
CALIBRATED = 1
INVALID = 2
def increment_grid_c(grid, lines, n):
lib.increment_grid(ffi.cast("double *", grid.ctypes.data),
ffi.cast("double *", lines.ctypes.data),
ffi.cast("long long", n))
def get_lines(p):
A = (p[:,0,1] - p[:,1,1])
B = (p[:,1,0] - p[:,0,0])
C = (p[:,0,0]*p[:,1,1] - p[:,1,0]*p[:,0,1])
return np.column_stack((A, B, -C))
def correct_pts(pts, rot_speeds, dt):
pts = np.hstack((pts, np.ones((pts.shape[0],1))))
cam_rot = dt * view_frame_from_device_frame.dot(rot_speeds)
rot = orient.rot_matrix(*cam_rot.T).T
pts_corrected = rot.dot(pts.T).T
pts_corrected[:,0] /= pts_corrected[:,2]
pts_corrected[:,1] /= pts_corrected[:,2]
return pts_corrected[:,:2]
def gaussian_kernel(sizex, sizey, stdx, stdy, dx, dy):
y, x = np.mgrid[-sizey:sizey+1, -sizex:sizex+1]
g = np.exp(-((x - dx)**2 / (2. * stdx**2) + (y - dy)**2 / (2. * stdy**2)))
return g / g.sum()
def blur_image(img, kernel):
return cv2.filter2D(img.astype(np.uint16), -1, kernel)
def is_calibration_valid(vp):
return vp[0] > VP_VALIDITY_CORNERS[0,0] and vp[0] < VP_VALIDITY_CORNERS[1,0] and \
vp[1] > VP_VALIDITY_CORNERS[0,1] and vp[1] < VP_VALIDITY_CORNERS[1,1]
class Calibrator(object):
def __init__(self, param_put=False):
self.param_put = param_put
self.speed = 0
self.vp_cycles = 0
self.angle_offset = 0.
self.yaw_rate = 0.
self.l100_last_updated = 0
self.prev_orbs = None
self.kernel = gaussian_kernel(11, 11, 2.35, 2.35, 0, 0)
self.vp = copy.copy(VP_INIT)
self.cal_status = Calibration.UNCALIBRATED
self.frame_counter = 0
self.params = Params()
calibration_params = self.params.get("CalibrationParams")
if calibration_params:
try:
calibration_params = json.loads(calibration_params)
self.vp = np.array(calibration_params["vanishing_point"])
self.cal_status = Calibration.CALIBRATED if is_calibration_valid(self.vp) else Calibration.INVALID
self.vp_cycles = VP_CYCLES_NEEDED
self.frame_counter = CALIBRATION_CYCLES_NEEDED
except Exception:
cloudlog.exception("CalibrationParams file found but error encountered")
self.vp_unfilt = self.vp
self.orb_last_updated = 0.
self.reset_grid()
def reset_grid(self):
if self.cal_status == Calibration.UNCALIBRATED:
# empty grid
self.grid = np.zeros((H+1, W+1), dtype=np.float)
else:
# gaussian grid, centered at vp
self.grid = gaussian_kernel(W/2., H/2., 16, 16, self.vp[0] - W/2., self.vp[1] - H/2.) * GRID_WEIGHT_INIT
def rescale_grid(self):
self.grid *= 0.9
def update(self, uvs, yaw_rate, speed):
if len(uvs) < 10 or \
abs(yaw_rate) > MAX_YAW_RATE_FILTER or \
speed < MIN_SPEED_FILTER:
return
rot_speeds = np.array([0.,0.,-yaw_rate])
uvs[:,1,:] = denormalize(correct_pts(normalize(uvs[:,1,:]), rot_speeds, self.dt))
good_tracks = np.linalg.norm(uvs[:,1,:] - uvs[:,0,:], axis=1) > 10
uvs = uvs[good_tracks]
if uvs.shape[0] > MAX_LINES:
uvs = uvs[np.random.choice(uvs.shape[0], MAX_LINES, replace=False), :]
lines = get_lines(uvs)
increment_grid_c(self.grid, lines, len(lines))
self.frame_counter += 1
if (self.frame_counter % FRAMES_NEEDED) == 0:
grid = blur_image(self.grid, self.kernel)
argmax_vp = np.unravel_index(np.argmax(grid), grid.shape)[::-1]
self.rescale_grid()
self.vp_unfilt = np.array(argmax_vp)
self.vp_cycles += 1
if (self.vp_cycles - VP_CYCLES_NEEDED) % 10 == 0: # update file every 10
# skip rate_lim before writing the file to avoid writing a lagged vp
if self.cal_status != Calibration.CALIBRATED:
self.vp = self.vp_unfilt
if self.param_put:
cal_params = {"vanishing_point": list(self.vp), "angle_offset2": self.angle_offset}
self.params.put("CalibrationParams", json.dumps(cal_params))
return self.vp_unfilt
def parse_orb_features(self, log):
matches = np.array(log.orbFeatures.matches)
n = len(log.orbFeatures.matches)
t = float(log.orbFeatures.timestampLastEof)*1e-9
if t == 0 or n == 0:
return t, np.zeros((0,2,2))
orbs = denormalize(np.column_stack((log.orbFeatures.xs,
log.orbFeatures.ys)))
if self.prev_orbs is not None:
valid_matches = (matches > -1) & (matches < len(self.prev_orbs))
tracks = np.hstack((orbs[valid_matches], self.prev_orbs[matches[valid_matches]])).reshape((-1,2,2))
else:
tracks = np.zeros((0,2,2))
self.prev_orbs = orbs
return t, tracks
def update_vp(self):
# rate limit to not move VP too fast
self.vp = np.clip(self.vp_unfilt, self.vp - VP_RATE_LIM, self.vp + VP_RATE_LIM)
if self.vp_cycles < VP_CYCLES_NEEDED:
self.cal_status = Calibration.UNCALIBRATED
else:
self.cal_status = Calibration.CALIBRATED if is_calibration_valid(self.vp) else Calibration.INVALID
def handle_orb_features(self, log):
self.update_vp()
self.time_orb, frame_raw = self.parse_orb_features(log)
self.dt = min(self.time_orb - self.orb_last_updated, 1.)
self.orb_last_updated = self.time_orb
if self.time_orb - self.l100_last_updated < 1:
return self.update(frame_raw, self.yaw_rate, self.speed)
def handle_live100(self, log):
self.l100_last_updated = self.time_orb
self.speed = log.live100.vEgo
self.angle_offset = log.live100.angleOffset
self.yaw_rate = log.live100.curvature * self.speed
def handle_debug(self):
grid_blurred = blur_image(self.grid, self.kernel)
grid_grey = np.clip(grid_blurred/(0.1 + np.max(grid_blurred))*255, 0, 255)
grid_color = np.repeat(grid_grey[:,:,np.newaxis], 3, axis=2)
grid_color[:,:,0] = 0
cv2.circle(grid_color, tuple(self.vp.astype(np.int64)), 2, (255, 255, 0), -1)
cv2.imshow("debug", grid_color.astype(np.uint8))
cv2.waitKey(1)
def send_data(self, livecalibration):
calib = get_calib_from_vp(self.vp)
extrinsic_matrix = get_view_frame_from_road_frame(0, calib[1], calib[2], model_height)
ke = eon_intrinsics.dot(extrinsic_matrix)
warp_matrix = get_camera_frame_from_model_frame(ke, model_height)
cal_send = messaging.new_message()
cal_send.init('liveCalibration')
cal_send.liveCalibration.calStatus = self.cal_status
cal_send.liveCalibration.calPerc = min(self.frame_counter * 100 / CALIBRATION_CYCLES_NEEDED, 100)
cal_send.liveCalibration.warpMatrix2 = map(float, warp_matrix.flatten())
cal_send.liveCalibration.extrinsicMatrix = map(float, extrinsic_matrix.flatten())
livecalibration.send(cal_send.to_bytes())
def calibrationd_thread(gctx=None, addr="127.0.0.1"):
context = zmq.Context()
live100 = messaging.sub_sock(context, service_list['live100'].port, addr=addr, conflate=True)
orbfeatures = messaging.sub_sock(context, service_list['orbFeatures'].port, addr=addr, conflate=True)
livecalibration = messaging.pub_sock(context, service_list['liveCalibration'].port)
calibrator = Calibrator(param_put = True)
# buffer with all the messages that still need to be input into the kalman
while 1:
of = messaging.recv_one(orbfeatures)
l100 = messaging.recv_one_or_none(live100)
new_vp = calibrator.handle_orb_features(of)
if DEBUG and new_vp is not None:
print 'got new vp', new_vp
if l100 is not None:
calibrator.handle_live100(l100)
if DEBUG:
calibrator.handle_debug()
calibrator.send_data(livecalibration)
def main(gctx=None, addr="127.0.0.1"):
calibrationd_thread(gctx, addr)
if __name__ == "__main__":
main()