You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							363 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							363 lines
						
					
					
						
							14 KiB
						
					
					
				// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
 | 
						|
// Licensed under the MIT License:
 | 
						|
//
 | 
						|
// Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
// of this software and associated documentation files (the "Software"), to deal
 | 
						|
// in the Software without restriction, including without limitation the rights
 | 
						|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
// copies of the Software, and to permit persons to whom the Software is
 | 
						|
// furnished to do so, subject to the following conditions:
 | 
						|
//
 | 
						|
// The above copyright notice and this permission notice shall be included in
 | 
						|
// all copies or substantial portions of the Software.
 | 
						|
//
 | 
						|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
// THE SOFTWARE.
 | 
						|
 | 
						|
#ifndef KJ_EXCEPTION_H_
 | 
						|
#define KJ_EXCEPTION_H_
 | 
						|
 | 
						|
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
 | 
						|
#pragma GCC system_header
 | 
						|
#endif
 | 
						|
 | 
						|
#include "memory.h"
 | 
						|
#include "array.h"
 | 
						|
#include "string.h"
 | 
						|
 | 
						|
namespace kj {
 | 
						|
 | 
						|
class ExceptionImpl;
 | 
						|
 | 
						|
class Exception {
 | 
						|
  // Exception thrown in case of fatal errors.
 | 
						|
  //
 | 
						|
  // Actually, a subclass of this which also implements std::exception will be thrown, but we hide
 | 
						|
  // that fact from the interface to avoid #including <exception>.
 | 
						|
 | 
						|
public:
 | 
						|
  enum class Type {
 | 
						|
    // What kind of failure?
 | 
						|
 | 
						|
    FAILED = 0,
 | 
						|
    // Something went wrong. This is the usual error type. KJ_ASSERT and KJ_REQUIRE throw this
 | 
						|
    // error type.
 | 
						|
 | 
						|
    OVERLOADED = 1,
 | 
						|
    // The call failed because of a temporary lack of resources. This could be space resources
 | 
						|
    // (out of memory, out of disk space) or time resources (request queue overflow, operation
 | 
						|
    // timed out).
 | 
						|
    //
 | 
						|
    // The operation might work if tried again, but it should NOT be repeated immediately as this
 | 
						|
    // may simply exacerbate the problem.
 | 
						|
 | 
						|
    DISCONNECTED = 2,
 | 
						|
    // The call required communication over a connection that has been lost. The callee will need
 | 
						|
    // to re-establish connections and try again.
 | 
						|
 | 
						|
    UNIMPLEMENTED = 3
 | 
						|
    // The requested method is not implemented. The caller may wish to revert to a fallback
 | 
						|
    // approach based on other methods.
 | 
						|
 | 
						|
    // IF YOU ADD A NEW VALUE:
 | 
						|
    // - Update the stringifier.
 | 
						|
    // - Update Cap'n Proto's RPC protocol's Exception.Type enum.
 | 
						|
  };
 | 
						|
 | 
						|
  Exception(Type type, const char* file, int line, String description = nullptr) noexcept;
 | 
						|
  Exception(Type type, String file, int line, String description = nullptr) noexcept;
 | 
						|
  Exception(const Exception& other) noexcept;
 | 
						|
  Exception(Exception&& other) = default;
 | 
						|
  ~Exception() noexcept;
 | 
						|
 | 
						|
  const char* getFile() const { return file; }
 | 
						|
  int getLine() const { return line; }
 | 
						|
  Type getType() const { return type; }
 | 
						|
  StringPtr getDescription() const { return description; }
 | 
						|
  ArrayPtr<void* const> getStackTrace() const { return arrayPtr(trace, traceCount); }
 | 
						|
 | 
						|
  struct Context {
 | 
						|
    // Describes a bit about what was going on when the exception was thrown.
 | 
						|
 | 
						|
    const char* file;
 | 
						|
    int line;
 | 
						|
    String description;
 | 
						|
    Maybe<Own<Context>> next;
 | 
						|
 | 
						|
    Context(const char* file, int line, String&& description, Maybe<Own<Context>>&& next)
 | 
						|
        : file(file), line(line), description(mv(description)), next(mv(next)) {}
 | 
						|
    Context(const Context& other) noexcept;
 | 
						|
  };
 | 
						|
 | 
						|
  inline Maybe<const Context&> getContext() const {
 | 
						|
    KJ_IF_MAYBE(c, context) {
 | 
						|
      return **c;
 | 
						|
    } else {
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void wrapContext(const char* file, int line, String&& description);
 | 
						|
  // Wraps the context in a new node.  This becomes the head node returned by getContext() -- it
 | 
						|
  // is expected that contexts will be added in reverse order as the exception passes up the
 | 
						|
  // callback stack.
 | 
						|
 | 
						|
  KJ_NOINLINE void extendTrace(uint ignoreCount);
 | 
						|
  // Append the current stack trace to the exception's trace, ignoring the first `ignoreCount`
 | 
						|
  // frames (see `getStackTrace()` for discussion of `ignoreCount`).
 | 
						|
 | 
						|
  KJ_NOINLINE void truncateCommonTrace();
 | 
						|
  // Remove the part of the stack trace which the exception shares with the caller of this method.
 | 
						|
  // This is used by the async library to remove the async infrastructure from the stack trace
 | 
						|
  // before replacing it with the async trace.
 | 
						|
 | 
						|
  void addTrace(void* ptr);
 | 
						|
  // Append the given pointer to the backtrace, if it is not already full. This is used by the
 | 
						|
  // async library to trace through the promise chain that led to the exception.
 | 
						|
 | 
						|
private:
 | 
						|
  String ownFile;
 | 
						|
  const char* file;
 | 
						|
  int line;
 | 
						|
  Type type;
 | 
						|
  String description;
 | 
						|
  Maybe<Own<Context>> context;
 | 
						|
  void* trace[32];
 | 
						|
  uint traceCount;
 | 
						|
 | 
						|
  friend class ExceptionImpl;
 | 
						|
};
 | 
						|
 | 
						|
StringPtr KJ_STRINGIFY(Exception::Type type);
 | 
						|
String KJ_STRINGIFY(const Exception& e);
 | 
						|
 | 
						|
// =======================================================================================
 | 
						|
 | 
						|
enum class LogSeverity {
 | 
						|
  INFO,      // Information describing what the code is up to, which users may request to see
 | 
						|
             // with a flag like `--verbose`.  Does not indicate a problem.  Not printed by
 | 
						|
             // default; you must call setLogLevel(INFO) to enable.
 | 
						|
  WARNING,   // A problem was detected but execution can continue with correct output.
 | 
						|
  ERROR,     // Something is wrong, but execution can continue with garbage output.
 | 
						|
  FATAL,     // Something went wrong, and execution cannot continue.
 | 
						|
  DBG        // Temporary debug logging.  See KJ_DBG.
 | 
						|
 | 
						|
  // Make sure to update the stringifier if you add a new severity level.
 | 
						|
};
 | 
						|
 | 
						|
StringPtr KJ_STRINGIFY(LogSeverity severity);
 | 
						|
 | 
						|
class ExceptionCallback {
 | 
						|
  // If you don't like C++ exceptions, you may implement and register an ExceptionCallback in order
 | 
						|
  // to perform your own exception handling.  For example, a reasonable thing to do is to have
 | 
						|
  // onRecoverableException() set a flag indicating that an error occurred, and then check for that
 | 
						|
  // flag just before writing to storage and/or returning results to the user.  If the flag is set,
 | 
						|
  // discard whatever you have and return an error instead.
 | 
						|
  //
 | 
						|
  // ExceptionCallbacks must always be allocated on the stack.  When an exception is thrown, the
 | 
						|
  // newest ExceptionCallback on the calling thread's stack is called.  The default implementation
 | 
						|
  // of each method calls the next-oldest ExceptionCallback for that thread.  Thus the callbacks
 | 
						|
  // behave a lot like try/catch blocks, except that they are called before any stack unwinding
 | 
						|
  // occurs.
 | 
						|
 | 
						|
public:
 | 
						|
  ExceptionCallback();
 | 
						|
  KJ_DISALLOW_COPY(ExceptionCallback);
 | 
						|
  virtual ~ExceptionCallback() noexcept(false);
 | 
						|
 | 
						|
  virtual void onRecoverableException(Exception&& exception);
 | 
						|
  // Called when an exception has been raised, but the calling code has the ability to continue by
 | 
						|
  // producing garbage output.  This method _should_ throw the exception, but is allowed to simply
 | 
						|
  // return if garbage output is acceptable.
 | 
						|
  //
 | 
						|
  // The global default implementation throws an exception unless the library was compiled with
 | 
						|
  // -fno-exceptions, in which case it logs an error and returns.
 | 
						|
 | 
						|
  virtual void onFatalException(Exception&& exception);
 | 
						|
  // Called when an exception has been raised and the calling code cannot continue.  If this method
 | 
						|
  // returns normally, abort() will be called.  The method must throw the exception to avoid
 | 
						|
  // aborting.
 | 
						|
  //
 | 
						|
  // The global default implementation throws an exception unless the library was compiled with
 | 
						|
  // -fno-exceptions, in which case it logs an error and returns.
 | 
						|
 | 
						|
  virtual void logMessage(LogSeverity severity, const char* file, int line, int contextDepth,
 | 
						|
                          String&& text);
 | 
						|
  // Called when something wants to log some debug text.  `contextDepth` indicates how many levels
 | 
						|
  // of context the message passed through; it may make sense to indent the message accordingly.
 | 
						|
  //
 | 
						|
  // The global default implementation writes the text to stderr.
 | 
						|
 | 
						|
  enum class StackTraceMode {
 | 
						|
    FULL,
 | 
						|
    // Stringifying a stack trace will attempt to determine source file and line numbers. This may
 | 
						|
    // be expensive. For example, on Linux, this shells out to `addr2line`.
 | 
						|
    //
 | 
						|
    // This is the default in debug builds.
 | 
						|
 | 
						|
    ADDRESS_ONLY,
 | 
						|
    // Stringifying a stack trace will only generate a list of code addresses.
 | 
						|
    //
 | 
						|
    // This is the default in release builds.
 | 
						|
 | 
						|
    NONE
 | 
						|
    // Generating a stack trace will always return an empty array.
 | 
						|
    //
 | 
						|
    // This avoids ever unwinding the stack. On Windows in particular, the stack unwinding library
 | 
						|
    // has been observed to be pretty slow, so exception-heavy code might benefit significantly
 | 
						|
    // from this setting. (But exceptions should be rare...)
 | 
						|
  };
 | 
						|
 | 
						|
  virtual StackTraceMode stackTraceMode();
 | 
						|
  // Returns the current preferred stack trace mode.
 | 
						|
 | 
						|
protected:
 | 
						|
  ExceptionCallback& next;
 | 
						|
 | 
						|
private:
 | 
						|
  ExceptionCallback(ExceptionCallback& next);
 | 
						|
 | 
						|
  class RootExceptionCallback;
 | 
						|
  friend ExceptionCallback& getExceptionCallback();
 | 
						|
};
 | 
						|
 | 
						|
ExceptionCallback& getExceptionCallback();
 | 
						|
// Returns the current exception callback.
 | 
						|
 | 
						|
KJ_NOINLINE KJ_NORETURN(void throwFatalException(kj::Exception&& exception, uint ignoreCount = 0));
 | 
						|
// Invoke the exception callback to throw the given fatal exception.  If the exception callback
 | 
						|
// returns, abort.
 | 
						|
 | 
						|
KJ_NOINLINE void throwRecoverableException(kj::Exception&& exception, uint ignoreCount = 0);
 | 
						|
// Invoke the exception callback to throw the given recoverable exception.  If the exception
 | 
						|
// callback returns, return normally.
 | 
						|
 | 
						|
// =======================================================================================
 | 
						|
 | 
						|
namespace _ { class Runnable; }
 | 
						|
 | 
						|
template <typename Func>
 | 
						|
Maybe<Exception> runCatchingExceptions(Func&& func) noexcept;
 | 
						|
// Executes the given function (usually, a lambda returning nothing) catching any exceptions that
 | 
						|
// are thrown.  Returns the Exception if there was one, or null if the operation completed normally.
 | 
						|
// Non-KJ exceptions will be wrapped.
 | 
						|
//
 | 
						|
// If exception are disabled (e.g. with -fno-exceptions), this will still detect whether any
 | 
						|
// recoverable exceptions occurred while running the function and will return those.
 | 
						|
 | 
						|
class UnwindDetector {
 | 
						|
  // Utility for detecting when a destructor is called due to unwind.  Useful for:
 | 
						|
  // - Avoiding throwing exceptions in this case, which would terminate the program.
 | 
						|
  // - Detecting whether to commit or roll back a transaction.
 | 
						|
  //
 | 
						|
  // To use this class, either inherit privately from it or declare it as a member.  The detector
 | 
						|
  // works by comparing the exception state against that when the constructor was called, so for
 | 
						|
  // an object that was actually constructed during exception unwind, it will behave as if no
 | 
						|
  // unwind is taking place.  This is usually the desired behavior.
 | 
						|
 | 
						|
public:
 | 
						|
  UnwindDetector();
 | 
						|
 | 
						|
  bool isUnwinding() const;
 | 
						|
  // Returns true if the current thread is in a stack unwind that it wasn't in at the time the
 | 
						|
  // object was constructed.
 | 
						|
 | 
						|
  template <typename Func>
 | 
						|
  void catchExceptionsIfUnwinding(Func&& func) const;
 | 
						|
  // Runs the given function (e.g., a lambda).  If isUnwinding() is true, any exceptions are
 | 
						|
  // caught and treated as secondary faults, meaning they are considered to be side-effects of the
 | 
						|
  // exception that is unwinding the stack.  Otherwise, exceptions are passed through normally.
 | 
						|
 | 
						|
private:
 | 
						|
  uint uncaughtCount;
 | 
						|
 | 
						|
  void catchExceptionsAsSecondaryFaults(_::Runnable& runnable) const;
 | 
						|
};
 | 
						|
 | 
						|
namespace _ {  // private
 | 
						|
 | 
						|
class Runnable {
 | 
						|
public:
 | 
						|
  virtual void run() = 0;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Func>
 | 
						|
class RunnableImpl: public Runnable {
 | 
						|
public:
 | 
						|
  RunnableImpl(Func&& func): func(kj::mv(func)) {}
 | 
						|
  void run() override {
 | 
						|
    func();
 | 
						|
  }
 | 
						|
private:
 | 
						|
  Func func;
 | 
						|
};
 | 
						|
 | 
						|
Maybe<Exception> runCatchingExceptions(Runnable& runnable) noexcept;
 | 
						|
 | 
						|
}  // namespace _ (private)
 | 
						|
 | 
						|
template <typename Func>
 | 
						|
Maybe<Exception> runCatchingExceptions(Func&& func) noexcept {
 | 
						|
  _::RunnableImpl<Decay<Func>> runnable(kj::fwd<Func>(func));
 | 
						|
  return _::runCatchingExceptions(runnable);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Func>
 | 
						|
void UnwindDetector::catchExceptionsIfUnwinding(Func&& func) const {
 | 
						|
  if (isUnwinding()) {
 | 
						|
    _::RunnableImpl<Decay<Func>> runnable(kj::fwd<Func>(func));
 | 
						|
    catchExceptionsAsSecondaryFaults(runnable);
 | 
						|
  } else {
 | 
						|
    func();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#define KJ_ON_SCOPE_SUCCESS(code) \
 | 
						|
  ::kj::UnwindDetector KJ_UNIQUE_NAME(_kjUnwindDetector); \
 | 
						|
  KJ_DEFER(if (!KJ_UNIQUE_NAME(_kjUnwindDetector).isUnwinding()) { code; })
 | 
						|
// Runs `code` if the current scope is exited normally (not due to an exception).
 | 
						|
 | 
						|
#define KJ_ON_SCOPE_FAILURE(code) \
 | 
						|
  ::kj::UnwindDetector KJ_UNIQUE_NAME(_kjUnwindDetector); \
 | 
						|
  KJ_DEFER(if (KJ_UNIQUE_NAME(_kjUnwindDetector).isUnwinding()) { code; })
 | 
						|
// Runs `code` if the current scope is exited due to an exception.
 | 
						|
 | 
						|
// =======================================================================================
 | 
						|
 | 
						|
KJ_NOINLINE ArrayPtr<void* const> getStackTrace(ArrayPtr<void*> space, uint ignoreCount);
 | 
						|
// Attempt to get the current stack trace, returning a list of pointers to instructions. The
 | 
						|
// returned array is a slice of `space`. Provide a larger `space` to get a deeper stack trace.
 | 
						|
// If the platform doesn't support stack traces, returns an empty array.
 | 
						|
//
 | 
						|
// `ignoreCount` items will be truncated from the front of the trace. This is useful for chopping
 | 
						|
// off a prefix of the trace that is uninteresting to the developer because it's just locations
 | 
						|
// inside the debug infrastructure that is requesting the trace. Be careful to mark functions as
 | 
						|
// KJ_NOINLINE if you intend to count them in `ignoreCount`. Note that, unfortunately, the
 | 
						|
// ignored entries will still waste space in the `space` array (and the returned array's `begin()`
 | 
						|
// is never exactly equal to `space.begin()` due to this effect, even if `ignoreCount` is zero
 | 
						|
// since `getStackTrace()` needs to ignore its own internal frames).
 | 
						|
 | 
						|
String stringifyStackTrace(ArrayPtr<void* const>);
 | 
						|
// Convert the stack trace to a string with file names and line numbers. This may involve executing
 | 
						|
// suprocesses.
 | 
						|
 | 
						|
String getStackTrace();
 | 
						|
// Get a stack trace right now and stringify it. Useful for debugging.
 | 
						|
 | 
						|
void printStackTraceOnCrash();
 | 
						|
// Registers signal handlers on common "crash" signals like SIGSEGV that will (attempt to) print
 | 
						|
// a stack trace. You should call this as early as possible on program startup. Programs using
 | 
						|
// KJ_MAIN get this automatically.
 | 
						|
 | 
						|
kj::StringPtr trimSourceFilename(kj::StringPtr filename);
 | 
						|
// Given a source code file name, trim off noisy prefixes like "src/" or
 | 
						|
// "/ekam-provider/canonical/".
 | 
						|
 | 
						|
}  // namespace kj
 | 
						|
 | 
						|
#endif  // KJ_EXCEPTION_H_
 | 
						|
 |