You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							111 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
	
	
							111 lines
						
					
					
						
							3.8 KiB
						
					
					
				import math
 | 
						|
import numpy as np
 | 
						|
from common.numpy_fast import interp
 | 
						|
from common.realtime import sec_since_boot
 | 
						|
from selfdrive.modeld.constants import T_IDXS
 | 
						|
from selfdrive.controls.lib.radar_helpers import _LEAD_ACCEL_TAU
 | 
						|
from selfdrive.controls.lib.lead_mpc_lib import libmpc_py
 | 
						|
from selfdrive.controls.lib.drive_helpers import MPC_COST_LONG, CONTROL_N
 | 
						|
from selfdrive.swaglog import cloudlog
 | 
						|
 | 
						|
MPC_T = list(np.arange(0,1.,.2)) + list(np.arange(1.,10.6,.6))
 | 
						|
 | 
						|
 | 
						|
class LeadMpc():
 | 
						|
  def __init__(self, mpc_id):
 | 
						|
    self.lead_id = mpc_id
 | 
						|
 | 
						|
    self.reset_mpc()
 | 
						|
    self.prev_lead_status = False
 | 
						|
    self.prev_lead_x = 0.0
 | 
						|
    self.new_lead = False
 | 
						|
 | 
						|
    self.last_cloudlog_t = 0.0
 | 
						|
    self.n_its = 0
 | 
						|
    self.duration = 0
 | 
						|
    self.status = False
 | 
						|
 | 
						|
    self.v_solution = np.zeros(CONTROL_N)
 | 
						|
    self.a_solution = np.zeros(CONTROL_N)
 | 
						|
    self.j_solution = np.zeros(CONTROL_N)
 | 
						|
 | 
						|
  def reset_mpc(self):
 | 
						|
    ffi, self.libmpc = libmpc_py.get_libmpc(self.lead_id)
 | 
						|
    self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
 | 
						|
                     MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
 | 
						|
 | 
						|
    self.mpc_solution = ffi.new("log_t *")
 | 
						|
    self.cur_state = ffi.new("state_t *")
 | 
						|
    self.cur_state[0].v_ego = 0
 | 
						|
    self.cur_state[0].a_ego = 0
 | 
						|
    self.a_lead_tau = _LEAD_ACCEL_TAU
 | 
						|
 | 
						|
  def set_cur_state(self, v, a):
 | 
						|
    v_safe = max(v, 1e-3)
 | 
						|
    a_safe = a
 | 
						|
    self.cur_state[0].v_ego = v_safe
 | 
						|
    self.cur_state[0].a_ego = a_safe
 | 
						|
 | 
						|
  def update(self, CS, radarstate, v_cruise):
 | 
						|
    v_ego = CS.vEgo
 | 
						|
    if self.lead_id == 0:
 | 
						|
      lead = radarstate.leadOne
 | 
						|
    else:
 | 
						|
      lead = radarstate.leadTwo
 | 
						|
    self.status = lead.status
 | 
						|
 | 
						|
    # Setup current mpc state
 | 
						|
    self.cur_state[0].x_ego = 0.0
 | 
						|
 | 
						|
    if lead is not None and lead.status:
 | 
						|
      x_lead = lead.dRel
 | 
						|
      v_lead = max(0.0, lead.vLead)
 | 
						|
      a_lead = lead.aLeadK
 | 
						|
 | 
						|
      if (v_lead < 0.1 or -a_lead / 2.0 > v_lead):
 | 
						|
        v_lead = 0.0
 | 
						|
        a_lead = 0.0
 | 
						|
 | 
						|
      self.a_lead_tau = lead.aLeadTau
 | 
						|
      self.new_lead = False
 | 
						|
      if not self.prev_lead_status or abs(x_lead - self.prev_lead_x) > 2.5:
 | 
						|
        self.libmpc.init_with_simulation(v_ego, x_lead, v_lead, a_lead, self.a_lead_tau)
 | 
						|
        self.new_lead = True
 | 
						|
 | 
						|
      self.prev_lead_status = True
 | 
						|
      self.prev_lead_x = x_lead
 | 
						|
      self.cur_state[0].x_l = x_lead
 | 
						|
      self.cur_state[0].v_l = v_lead
 | 
						|
    else:
 | 
						|
      self.prev_lead_status = False
 | 
						|
      # Fake a fast lead car, so mpc keeps running
 | 
						|
      self.cur_state[0].x_l = 50.0
 | 
						|
      self.cur_state[0].v_l = v_ego + 10.0
 | 
						|
      a_lead = 0.0
 | 
						|
      self.a_lead_tau = _LEAD_ACCEL_TAU
 | 
						|
 | 
						|
    # Calculate mpc
 | 
						|
    t = sec_since_boot()
 | 
						|
    self.n_its = self.libmpc.run_mpc(self.cur_state, self.mpc_solution, self.a_lead_tau, a_lead)
 | 
						|
    self.v_solution = interp(T_IDXS[:CONTROL_N], MPC_T, self.mpc_solution.v_ego)
 | 
						|
    self.a_solution = interp(T_IDXS[:CONTROL_N], MPC_T, self.mpc_solution.a_ego)
 | 
						|
    self.j_solution = interp(T_IDXS[:CONTROL_N], MPC_T[:-1], self.mpc_solution.j_ego)
 | 
						|
    self.duration = int((sec_since_boot() - t) * 1e9)
 | 
						|
 | 
						|
    # Reset if NaN or goes through lead car
 | 
						|
    crashing = any(lead - ego < -50 for (lead, ego) in zip(self.mpc_solution[0].x_l, self.mpc_solution[0].x_ego))
 | 
						|
    nans = any(math.isnan(x) for x in self.mpc_solution[0].v_ego)
 | 
						|
    backwards = min(self.mpc_solution[0].v_ego) < -0.15
 | 
						|
 | 
						|
    if ((backwards or crashing) and self.prev_lead_status) or nans:
 | 
						|
      if t > self.last_cloudlog_t + 5.0:
 | 
						|
        self.last_cloudlog_t = t
 | 
						|
        cloudlog.warning("Longitudinal mpc %d reset - backwards: %s crashing: %s nan: %s" % (
 | 
						|
                          self.lead_id, backwards, crashing, nans))
 | 
						|
 | 
						|
      self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
 | 
						|
                       MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
 | 
						|
      self.cur_state[0].v_ego = v_ego
 | 
						|
      self.cur_state[0].a_ego = 0.0
 | 
						|
      self.a_mpc = CS.aEgo
 | 
						|
      self.prev_lead_status = False
 | 
						|
 |