open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

143 lines
4.7 KiB

#!/usr/bin/env python3
import numpy as np
from selfdrive.swaglog import cloudlog
from selfdrive.locationd.kalman.live_model import gen_model, States
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind, KalmanError
from selfdrive.locationd.kalman.ekf_sym import EKF_sym
initial_x = np.array([-2.7e6, 4.2e6, 3.8e6,
1, 0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
1,
0, 0, 0,
0, 0, 0])
# state covariance
initial_P_diag = np.array([10000**2, 10000**2, 10000**2,
10**2, 10**2, 10**2,
10**2, 10**2, 10**2,
1**2, 1**2, 1**2,
0.05**2, 0.05**2, 0.05**2,
0.02**2,
1**2, 1**2, 1**2,
(0.01)**2, (0.01)**2, (0.01)**2])
class LiveKalman():
def __init__(self):
# process noise
Q = np.diag([0.03**2, 0.03**2, 0.03**2,
0.0**2, 0.0**2, 0.0**2,
0.0**2, 0.0**2, 0.0**2,
0.1**2, 0.1**2, 0.1**2,
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
(0.02/100)**2,
3**2, 3**2, 3**2,
0.001**2,
(0.05/60)**2, (0.05/60)**2, (0.05/60)**2])
self.dim_state = initial_x.shape[0]
self.dim_state_err = initial_P_diag.shape[0]
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]),
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]),
ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])}
name = 'live'
gen_model(name, self.dim_state, self.dim_state_err, [])
# init filter
self.filter = EKF_sym(name, Q, initial_x, np.diag(initial_P_diag), self.dim_state, self.dim_state_err)
@property
def x(self):
return self.filter.state()
@property
def t(self):
return self.filter.filter_time
@property
def P(self):
return self.filter.covs()
def predict(self, t):
return self.filter.predict(t)
def rts_smooth(self, estimates):
return self.filter.rts_smooth(estimates, norm_quats=True)
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
if covs_diag is not None:
P = np.diag(covs_diag)
elif covs is not None:
P = covs
else:
P = self.filter.covs()
self.filter.init_state(state, P, filter_time)
def predict_and_observe(self, t, kind, data):
if len(data) > 0:
data = np.atleast_2d(data)
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
r = self.predict_and_update_odo_trans(data, t, kind)
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
r = self.predict_and_update_odo_rot(data, t, kind)
elif kind == ObservationKind.ODOMETRIC_SPEED:
r = self.predict_and_update_odo_speed(data, t, kind)
else:
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
# Normalize quats
quat_norm = np.linalg.norm(self.filter.x[3:7, 0])
# Should not continue if the quats behave this weirdly
if not (0.1 < quat_norm < 10):
cloudlog.error("Kalman filter quaternions unstable")
raise KalmanError
self.filter.x[States.ECEF_ORIENTATION, 0] = self.filter.x[States.ECEF_ORIENTATION, 0] / quat_norm
return r
def get_R(self, kind, n):
obs_noise = self.obs_noise[kind]
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i, :, :] = obs_noise
return R
def predict_and_update_odo_speed(self, speed, t, kind):
z = np.array(speed)
R = np.zeros((len(speed), 1, 1))
for i, _ in enumerate(z):
R[i, :, :] = np.diag([0.2**2])
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_trans(self, trans, t, kind):
z = trans[:, :3]
R = np.zeros((len(trans), 3, 3))
for i, _ in enumerate(z):
R[i, :, :] = np.diag(trans[i, 3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_rot(self, rot, t, kind):
z = rot[:, :3]
R = np.zeros((len(rot), 3, 3))
for i, _ in enumerate(z):
R[i, :, :] = np.diag(rot[i, 3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
if __name__ == "__main__":
LiveKalman()