You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							218 lines
						
					
					
						
							6.5 KiB
						
					
					
				
			
		
		
	
	
							218 lines
						
					
					
						
							6.5 KiB
						
					
					
				//
 | 
						|
// C++ standalone verion of fastcluster by Daniel Müllner
 | 
						|
//
 | 
						|
// Copyright: Christoph Dalitz, 2018
 | 
						|
//            Daniel Müllner, 2011
 | 
						|
// License:   BSD style license
 | 
						|
//            (see the file LICENSE for details)
 | 
						|
//
 | 
						|
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
 | 
						|
extern "C" {
 | 
						|
#include "fastcluster.h"
 | 
						|
}
 | 
						|
 | 
						|
// Code by Daniel Müllner
 | 
						|
// workaround to make it usable as a standalone version (without R)
 | 
						|
bool fc_isnan(double x) { return false; }
 | 
						|
#include "fastcluster_dm.cpp"
 | 
						|
#include "fastcluster_R_dm.cpp"
 | 
						|
 | 
						|
extern "C" {
 | 
						|
//
 | 
						|
// Assigns cluster labels (0, ..., nclust-1) to the n points such
 | 
						|
// that the cluster result is split into nclust clusters.
 | 
						|
//
 | 
						|
// Input arguments:
 | 
						|
//   n      = number of observables
 | 
						|
//   merge  = clustering result in R format
 | 
						|
//   nclust = number of clusters
 | 
						|
// Output arguments:
 | 
						|
//   labels = allocated integer array of size n for result
 | 
						|
//
 | 
						|
  void cutree_k(int n, const int* merge, int nclust, int* labels) {
 | 
						|
 | 
						|
    int k,m1,m2,j,l;
 | 
						|
 | 
						|
    if (nclust > n || nclust < 2) {
 | 
						|
      for (j=0; j<n; j++) labels[j] = 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // assign to each observable the number of its last merge step
 | 
						|
    // beware: indices of observables in merge start at 1 (R convention)
 | 
						|
    std::vector<int> last_merge(n, 0);
 | 
						|
    for (k=1; k<=(n-nclust); k++) {
 | 
						|
      // (m1,m2) = merge[k,]
 | 
						|
      m1 = merge[k-1];
 | 
						|
      m2 = merge[n-1+k-1];
 | 
						|
      if (m1 < 0 && m2 < 0) { // both single observables
 | 
						|
        last_merge[-m1-1] = last_merge[-m2-1] = k;
 | 
						|
      }
 | 
						|
      else if (m1 < 0 || m2 < 0) { // one is a cluster
 | 
						|
        if(m1 < 0) { j = -m1; m1 = m2; } else j = -m2;
 | 
						|
        // merging single observable and cluster
 | 
						|
        for(l = 0; l < n; l++)
 | 
						|
          if (last_merge[l] == m1)
 | 
						|
            last_merge[l] = k;
 | 
						|
        last_merge[j-1] = k;
 | 
						|
      }
 | 
						|
      else { // both cluster
 | 
						|
        for(l=0; l < n; l++) {
 | 
						|
          if( last_merge[l] == m1 || last_merge[l] == m2 )
 | 
						|
            last_merge[l] = k;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // assign cluster labels
 | 
						|
    int label = 0;
 | 
						|
    std::vector<int> z(n,-1);
 | 
						|
    for (j=0; j<n; j++) {
 | 
						|
      if (last_merge[j] == 0) { // still singleton
 | 
						|
        labels[j] = label++;
 | 
						|
      } else {
 | 
						|
        if (z[last_merge[j]] < 0) {
 | 
						|
          z[last_merge[j]] = label++;
 | 
						|
        }
 | 
						|
        labels[j] = z[last_merge[j]];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //
 | 
						|
  // Assigns cluster labels (0, ..., nclust-1) to the n points such
 | 
						|
  // that the hierarchical clustering is stopped when cluster distance >= cdist
 | 
						|
  //
 | 
						|
  // Input arguments:
 | 
						|
  //   n      = number of observables
 | 
						|
  //   merge  = clustering result in R format
 | 
						|
  //   height = cluster distance at each merge step
 | 
						|
  //   cdist  = cutoff cluster distance
 | 
						|
  // Output arguments:
 | 
						|
  //   labels = allocated integer array of size n for result
 | 
						|
  //
 | 
						|
  void cutree_cdist(int n, const int* merge, double* height, double cdist, int* labels) {
 | 
						|
 | 
						|
    int k;
 | 
						|
 | 
						|
    for (k=0; k<(n-1); k++) {
 | 
						|
      if (height[k] >= cdist) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    cutree_k(n, merge, n-k, labels);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //
 | 
						|
  // Hierarchical clustering with one of Daniel Muellner's fast algorithms
 | 
						|
  //
 | 
						|
  // Input arguments:
 | 
						|
  //   n       = number of observables
 | 
						|
  //   distmat = condensed distance matrix, i.e. an n*(n-1)/2 array representing
 | 
						|
  //             the upper triangle (without diagonal elements) of the distance
 | 
						|
  //             matrix, e.g. for n=4:
 | 
						|
  //               d00 d01 d02 d03
 | 
						|
  //               d10 d11 d12 d13   ->  d01 d02 d03 d12 d13 d23
 | 
						|
  //               d20 d21 d22 d23
 | 
						|
  //               d30 d31 d32 d33
 | 
						|
  //   method  = cluster metric (see enum method_code)
 | 
						|
  // Output arguments:
 | 
						|
  //   merge   = allocated (n-1)x2 matrix (2*(n-1) array) for storing result.
 | 
						|
  //             Result follows R hclust convention:
 | 
						|
  //              - observabe indices start with one
 | 
						|
  //              - merge[i][] contains the merged nodes in step i
 | 
						|
  //              - merge[i][j] is negative when the node is an atom
 | 
						|
  //   height  = allocated (n-1) array with distances at each merge step
 | 
						|
  // Return code:
 | 
						|
  //   0 = ok
 | 
						|
  //   1 = invalid method
 | 
						|
  //
 | 
						|
  int hclust_fast(int n, double* distmat, int method, int* merge, double* height) {
 | 
						|
 | 
						|
    // call appropriate culstering function
 | 
						|
    cluster_result Z2(n-1);
 | 
						|
    if (method == HCLUST_METHOD_SINGLE) {
 | 
						|
      // single link
 | 
						|
      MST_linkage_core(n, distmat, Z2);
 | 
						|
    }
 | 
						|
    else if (method == HCLUST_METHOD_COMPLETE) {
 | 
						|
      // complete link
 | 
						|
      NN_chain_core<METHOD_METR_COMPLETE, t_float>(n, distmat, NULL, Z2);
 | 
						|
    }
 | 
						|
    else if (method == HCLUST_METHOD_AVERAGE) {
 | 
						|
      // best average distance
 | 
						|
      double* members = new double[n];
 | 
						|
      for (int i=0; i<n; i++) members[i] = 1;
 | 
						|
      NN_chain_core<METHOD_METR_AVERAGE, t_float>(n, distmat, members, Z2);
 | 
						|
      delete[] members;
 | 
						|
    }
 | 
						|
    else if (method == HCLUST_METHOD_MEDIAN) {
 | 
						|
      // best median distance (beware: O(n^3))
 | 
						|
      generic_linkage<METHOD_METR_MEDIAN, t_float>(n, distmat, NULL, Z2);
 | 
						|
    }
 | 
						|
    else if (method == HCLUST_METHOD_CENTROID) {
 | 
						|
      // best centroid distance (beware: O(n^3))
 | 
						|
      double* members = new double[n];
 | 
						|
      for (int i=0; i<n; i++) members[i] = 1;
 | 
						|
      generic_linkage<METHOD_METR_CENTROID, t_float>(n, distmat, members, Z2);
 | 
						|
      delete[] members;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    int* order = new int[n];
 | 
						|
    if (method == HCLUST_METHOD_MEDIAN || method == HCLUST_METHOD_CENTROID) {
 | 
						|
      generate_R_dendrogram<true>(merge, height, order, Z2, n);
 | 
						|
    } else {
 | 
						|
      generate_R_dendrogram<false>(merge, height, order, Z2, n);
 | 
						|
    }
 | 
						|
    delete[] order; // only needed for visualization
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Build condensed distance matrix
 | 
						|
  // Input arguments:
 | 
						|
  //   n  = number of observables
 | 
						|
  //   m  = dimension of observable
 | 
						|
  // Output arguments:
 | 
						|
  //   out = allocated integer array of size n * (n - 1) / 2 for result
 | 
						|
  void hclust_pdist(int n, int m, double* pts, double* out) {
 | 
						|
    int ii = 0;
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
      for (int j = i + 1; j < n; j++) {
 | 
						|
        // Compute euclidian distance
 | 
						|
        double d = 0;
 | 
						|
        for (int k = 0; k < m; k ++) {
 | 
						|
          double error = pts[i * m + k] - pts[j * m + k];
 | 
						|
          d += (error * error);
 | 
						|
        }
 | 
						|
        out[ii] = d;//sqrt(d);
 | 
						|
        ii++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void cluster_points_centroid(int n, int m, double* pts, double dist, int* idx) {
 | 
						|
    double* pdist = new double[n * (n - 1) / 2];
 | 
						|
    int* merge = new int[2 * (n - 1)];
 | 
						|
    double* height = new double[n - 1];
 | 
						|
 | 
						|
    hclust_pdist(n, m, pts, pdist);
 | 
						|
    hclust_fast(n, pdist, HCLUST_METHOD_CENTROID, merge, height);
 | 
						|
    cutree_cdist(n, merge, height, dist, idx);
 | 
						|
 | 
						|
    delete[] pdist;
 | 
						|
    delete[] merge;
 | 
						|
    delete[] height;
 | 
						|
  }
 | 
						|
}
 | 
						|
 |