You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							723 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
	
	
							723 lines
						
					
					
						
							26 KiB
						
					
					
				| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
 | |
| // Licensed under the MIT License:
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| // This file contains types which are intended to help detect incorrect usage at compile
 | |
| // time, but should then be optimized down to basic primitives (usually, integers) by the
 | |
| // compiler.
 | |
| 
 | |
| #ifndef CAPNP_COMMON_H_
 | |
| #define CAPNP_COMMON_H_
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
 | |
| #pragma GCC system_header
 | |
| #endif
 | |
| 
 | |
| #include <inttypes.h>
 | |
| #include <kj/string.h>
 | |
| #include <kj/memory.h>
 | |
| 
 | |
| #if CAPNP_DEBUG_TYPES
 | |
| #include <kj/units.h>
 | |
| #endif
 | |
| 
 | |
| namespace capnp {
 | |
| 
 | |
| #define CAPNP_VERSION_MAJOR 0
 | |
| #define CAPNP_VERSION_MINOR 6
 | |
| #define CAPNP_VERSION_MICRO 1
 | |
| 
 | |
| #define CAPNP_VERSION \
 | |
|   (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)
 | |
| 
 | |
| #ifndef CAPNP_LITE
 | |
| #define CAPNP_LITE 0
 | |
| #endif
 | |
| 
 | |
| typedef unsigned int uint;
 | |
| 
 | |
| struct Void {
 | |
|   // Type used for Void fields.  Using C++'s "void" type creates a bunch of issues since it behaves
 | |
|   // differently from other types.
 | |
| 
 | |
|   inline constexpr bool operator==(Void other) const { return true; }
 | |
|   inline constexpr bool operator!=(Void other) const { return false; }
 | |
| };
 | |
| 
 | |
| static constexpr Void VOID = Void();
 | |
| // Constant value for `Void`,  which is an empty struct.
 | |
| 
 | |
| inline kj::StringPtr KJ_STRINGIFY(Void) { return "void"; }
 | |
| 
 | |
| struct Text;
 | |
| struct Data;
 | |
| 
 | |
| enum class Kind: uint8_t {
 | |
|   PRIMITIVE,
 | |
|   BLOB,
 | |
|   ENUM,
 | |
|   STRUCT,
 | |
|   UNION,
 | |
|   INTERFACE,
 | |
|   LIST,
 | |
| 
 | |
|   OTHER
 | |
|   // Some other type which is often a type parameter to Cap'n Proto templates, but which needs
 | |
|   // special handling. This includes types like AnyPointer, Dynamic*, etc.
 | |
| };
 | |
| 
 | |
| enum class Style: uint8_t {
 | |
|   PRIMITIVE,
 | |
|   POINTER,      // other than struct
 | |
|   STRUCT,
 | |
|   CAPABILITY
 | |
| };
 | |
| 
 | |
| enum class ElementSize: uint8_t {
 | |
|   // Size of a list element.
 | |
| 
 | |
|   VOID = 0,
 | |
|   BIT = 1,
 | |
|   BYTE = 2,
 | |
|   TWO_BYTES = 3,
 | |
|   FOUR_BYTES = 4,
 | |
|   EIGHT_BYTES = 5,
 | |
| 
 | |
|   POINTER = 6,
 | |
| 
 | |
|   INLINE_COMPOSITE = 7
 | |
| };
 | |
| 
 | |
| enum class PointerType {
 | |
|   // Various wire types a pointer field can take
 | |
| 
 | |
|   NULL_,
 | |
|   // Should be NULL, but that's #defined in stddef.h
 | |
| 
 | |
|   STRUCT,
 | |
|   LIST,
 | |
|   CAPABILITY
 | |
| };
 | |
| 
 | |
| namespace schemas {
 | |
| 
 | |
| template <typename T>
 | |
| struct EnumInfo;
 | |
| 
 | |
| }  // namespace schemas
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename T, typename = void> struct Kind_;
 | |
| 
 | |
| template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
 | |
| template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
 | |
| template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };
 | |
| 
 | |
| template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> {
 | |
|   static constexpr Kind kind = Kind::STRUCT;
 | |
| };
 | |
| template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> {
 | |
|   static constexpr Kind kind = Kind::INTERFACE;
 | |
| };
 | |
| template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> {
 | |
|   static constexpr Kind kind = Kind::ENUM;
 | |
| };
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| template <typename T, Kind k = _::Kind_<T>::kind>
 | |
| inline constexpr Kind kind() {
 | |
|   // This overload of kind() matches types which have a Kind_ specialization.
 | |
| 
 | |
|   return k;
 | |
| }
 | |
| 
 | |
| #if _MSC_VER
 | |
| 
 | |
| #define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
 | |
| // Avoid constexpr methods in MSVC (it remains buggy in many situations).
 | |
| 
 | |
| #else  // _MSC_VER
 | |
| 
 | |
| #define CAPNP_KIND(T) ::capnp::kind<T>()
 | |
| // Use this macro rather than kind<T>() in any code which must work in MSVC.
 | |
| 
 | |
| #endif  // _MSC_VER, else
 | |
| 
 | |
| #if !CAPNP_LITE
 | |
| 
 | |
| template <typename T, Kind k = kind<T>()>
 | |
| inline constexpr Style style() {
 | |
|   return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE
 | |
|        : k == Kind::STRUCT ? Style::STRUCT
 | |
|        : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER;
 | |
| }
 | |
| 
 | |
| #endif  // !CAPNP_LITE
 | |
| 
 | |
| template <typename T, Kind k = CAPNP_KIND(T)>
 | |
| struct List;
 | |
| 
 | |
| #if _MSC_VER
 | |
| 
 | |
| template <typename T, Kind k>
 | |
| struct List {};
 | |
| // For some reason, without this declaration, MSVC will error out on some uses of List
 | |
| // claiming that "T" -- as used in the default initializer for the second template param, "k" --
 | |
| // is not defined. I do not understand this error, but adding this empty default declaration fixes
 | |
| // it.
 | |
| 
 | |
| #endif
 | |
| 
 | |
| template <typename T> struct ListElementType_;
 | |
| template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
 | |
| template <typename T> using ListElementType = typename ListElementType_<T>::Type;
 | |
| 
 | |
| namespace _ {  // private
 | |
| template <typename T, Kind k> struct Kind_<List<T, k>> {
 | |
|   static constexpr Kind kind = Kind::LIST;
 | |
| };
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
 | |
| template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
 | |
| template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
 | |
| template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
 | |
| template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
 | |
| // The type returned by List<T>::Reader::operator[].
 | |
| 
 | |
| template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
 | |
| template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
 | |
| template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
 | |
| template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
 | |
| template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
 | |
| // The type returned by List<T>::Builder::operator[].
 | |
| 
 | |
| template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
 | |
| template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
 | |
| template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;
 | |
| 
 | |
| template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
 | |
| template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };
 | |
| 
 | |
| template <typename T>
 | |
| using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;
 | |
| 
 | |
| template <typename T>
 | |
| using FromReader = typename kj::Decay<T>::Reads;
 | |
| // FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).
 | |
| 
 | |
| template <typename T>
 | |
| using FromBuilder = typename kj::Decay<T>::Builds;
 | |
| // FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).
 | |
| 
 | |
| template <typename T>
 | |
| using FromPipeline = typename kj::Decay<T>::Pipelines;
 | |
| // FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).
 | |
| 
 | |
| template <typename T>
 | |
| using FromClient = typename kj::Decay<T>::Calls;
 | |
| // FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).
 | |
| 
 | |
| template <typename T>
 | |
| using FromServer = typename kj::Decay<T>::Serves;
 | |
| // FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).
 | |
| 
 | |
| template <typename T, typename = void>
 | |
| struct FromAny_;
 | |
| 
 | |
| template <typename T>
 | |
| struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> {
 | |
|   using Type = FromReader<T>;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> {
 | |
|   using Type = FromBuilder<T>;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> {
 | |
|   using Type = FromPipeline<T>;
 | |
| };
 | |
| 
 | |
| // Note that T::Client is covered by FromReader
 | |
| 
 | |
| template <typename T>
 | |
| struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> {
 | |
|   using Type = FromServer<T>;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct FromAny_<T,
 | |
|     kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> {
 | |
|   // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC
 | |
|   // cannot yet use style<T>() in this constexpr context.
 | |
| 
 | |
|   using Type = kj::Decay<T>;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| using FromAny = typename FromAny_<T>::Type;
 | |
| // Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is:
 | |
| //
 | |
| //     Foo::Reader -> Foo
 | |
| //     Foo::Builder -> Foo
 | |
| //     Foo::Pipeline -> Foo
 | |
| //     Foo::Client -> Foo
 | |
| //     Own<Foo::Server> -> Foo
 | |
| //     uint32_t -> uint32_t
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename T, Kind k = CAPNP_KIND(T)>
 | |
| struct PointerHelpers;
 | |
| 
 | |
| #if _MSC_VER
 | |
| 
 | |
| template <typename T, Kind k>
 | |
| struct PointerHelpers {};
 | |
| // For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
 | |
| // claiming that "T" -- as used in the default initializer for the second template param, "k" --
 | |
| // is not defined. I do not understand this error, but adding this empty default declaration fixes
 | |
| // it.
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| struct MessageSize {
 | |
|   // Size of a message.  Every struct type has a method `.totalSize()` that returns this.
 | |
|   uint64_t wordCount;
 | |
|   uint capCount;
 | |
| };
 | |
| 
 | |
| // =======================================================================================
 | |
| // Raw memory types and measures
 | |
| 
 | |
| using kj::byte;
 | |
| 
 | |
| class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
 | |
| // word is an opaque type with size of 64 bits.  This type is useful only to make pointer
 | |
| // arithmetic clearer.  Since the contents are private, the only way to access them is to first
 | |
| // reinterpret_cast to some other pointer type.
 | |
| //
 | |
| // Copying is disallowed because you should always use memcpy().  Otherwise, you may run afoul of
 | |
| // aliasing rules.
 | |
| //
 | |
| // A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
 | |
| // that type.
 | |
| 
 | |
| static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
 | |
| static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");
 | |
| 
 | |
| #if CAPNP_DEBUG_TYPES
 | |
| // Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types.  Otherwise, plain integers are
 | |
| // used.  All the code should still operate exactly the same, we just lose compile-time checking.
 | |
| // Note that this will also change symbol names, so it's important that the library and any clients
 | |
| // be compiled with the same setting here.
 | |
| //
 | |
| // We disable this by default to reduce symbol name size and avoid any possibility of the compiler
 | |
| // failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
 | |
| // during development and testing.
 | |
| 
 | |
| namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }
 | |
| 
 | |
| template <uint width, typename T = uint>
 | |
| using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>;
 | |
| template <uint width, typename T = uint>
 | |
| using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>;
 | |
| template <uint width, typename T = uint>
 | |
| using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>;
 | |
| template <uint width, typename T = uint>
 | |
| using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>;
 | |
| template <uint width, typename T = uint>
 | |
| using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>;
 | |
| 
 | |
| typedef BitCountN<8, uint8_t> BitCount8;
 | |
| typedef BitCountN<16, uint16_t> BitCount16;
 | |
| typedef BitCountN<32, uint32_t> BitCount32;
 | |
| typedef BitCountN<64, uint64_t> BitCount64;
 | |
| typedef BitCountN<sizeof(uint) * 8, uint> BitCount;
 | |
| 
 | |
| typedef ByteCountN<8, uint8_t> ByteCount8;
 | |
| typedef ByteCountN<16, uint16_t> ByteCount16;
 | |
| typedef ByteCountN<32, uint32_t> ByteCount32;
 | |
| typedef ByteCountN<64, uint64_t> ByteCount64;
 | |
| typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;
 | |
| 
 | |
| typedef WordCountN<8, uint8_t> WordCount8;
 | |
| typedef WordCountN<16, uint16_t> WordCount16;
 | |
| typedef WordCountN<32, uint32_t> WordCount32;
 | |
| typedef WordCountN<64, uint64_t> WordCount64;
 | |
| typedef WordCountN<sizeof(uint) * 8, uint> WordCount;
 | |
| 
 | |
| typedef ElementCountN<8, uint8_t> ElementCount8;
 | |
| typedef ElementCountN<16, uint16_t> ElementCount16;
 | |
| typedef ElementCountN<32, uint32_t> ElementCount32;
 | |
| typedef ElementCountN<64, uint64_t> ElementCount64;
 | |
| typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;
 | |
| 
 | |
| typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
 | |
| typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
 | |
| typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
 | |
| typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
 | |
| typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;
 | |
| 
 | |
| template <uint width>
 | |
| using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
 | |
| template <uint width>
 | |
| using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
 | |
| template <uint width>
 | |
| using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
 | |
| template <uint width>
 | |
| using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());
 | |
| 
 | |
| using kj::bounded;
 | |
| using kj::unbound;
 | |
| using kj::unboundAs;
 | |
| using kj::unboundMax;
 | |
| using kj::unboundMaxBits;
 | |
| using kj::assertMax;
 | |
| using kj::assertMaxBits;
 | |
| using kj::upgradeBound;
 | |
| using kj::ThrowOverflow;
 | |
| using kj::assumeBits;
 | |
| using kj::assumeMax;
 | |
| using kj::subtractChecked;
 | |
| using kj::trySubtract;
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
 | |
|   return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
 | |
| }
 | |
| 
 | |
| constexpr auto BITS = kj::unit<BitCountN<1>>();
 | |
| constexpr auto BYTES = kj::unit<ByteCountN<1>>();
 | |
| constexpr auto WORDS = kj::unit<WordCountN<1>>();
 | |
| constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>();
 | |
| constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>();
 | |
| 
 | |
| constexpr auto ZERO = kj::bounded<0>();
 | |
| constexpr auto ONE = kj::bounded<1>();
 | |
| 
 | |
| // GCC 4.7 actually gives unused warnings on these constants in opt mode...
 | |
| constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES;
 | |
| constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS;
 | |
| constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS;
 | |
| 
 | |
| constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS;
 | |
| constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS;
 | |
| constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS;
 | |
| 
 | |
| constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;
 | |
| 
 | |
| constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment.
 | |
| constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list.
 | |
| constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section.
 | |
| constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section.
 | |
| constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob.
 | |
| 
 | |
| typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
 | |
| typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
 | |
| typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
 | |
| typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
 | |
| typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
 | |
| 
 | |
| constexpr auto MAX_SEGMENT_WORDS =
 | |
|     bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS;
 | |
| constexpr auto MAX_LIST_ELEMENTS =
 | |
|     bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS;
 | |
| constexpr auto MAX_STUCT_DATA_WORDS =
 | |
|     bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS;
 | |
| constexpr auto MAX_STRUCT_POINTER_COUNT =
 | |
|     bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS;
 | |
| 
 | |
| using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD);
 | |
| // Number of bits in a Struct data segment (should come out to BitCountN<22>).
 | |
| 
 | |
| using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS));
 | |
| using StructPointerOffset = StructPointerCount;
 | |
| // Type of a field offset.
 | |
| 
 | |
| inline StructDataOffset assumeDataOffset(uint32_t offset) {
 | |
|   return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS),
 | |
|                    bounded(offset) * ELEMENTS);
 | |
| }
 | |
| 
 | |
| inline StructPointerOffset assumePointerOffset(uint32_t offset) {
 | |
|   return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS);
 | |
| }
 | |
| 
 | |
| constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
 | |
| typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize;
 | |
| // Not including NUL terminator.
 | |
| 
 | |
| template <typename T>
 | |
| inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() {
 | |
|   return bounded<sizeof(T)>() * BYTES / ELEMENTS;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() {
 | |
|   return bounded<sizeof(T) * 8>() * BITS / ELEMENTS;
 | |
| }
 | |
| 
 | |
| template <typename T, uint maxN>
 | |
| inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T>
 | |
| intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) {
 | |
|   return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>();
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) {
 | |
|   return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) {
 | |
|   return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| template <uint width, typename T = uint>
 | |
| using BitCountN = T;
 | |
| template <uint width, typename T = uint>
 | |
| using ByteCountN = T;
 | |
| template <uint width, typename T = uint>
 | |
| using WordCountN = T;
 | |
| template <uint width, typename T = uint>
 | |
| using ElementCountN = T;
 | |
| template <uint width, typename T = uint>
 | |
| using WirePointerCountN = T;
 | |
| 
 | |
| 
 | |
| // XXX
 | |
| typedef BitCountN<8, uint8_t> BitCount8;
 | |
| typedef BitCountN<16, uint16_t> BitCount16;
 | |
| typedef BitCountN<32, uint32_t> BitCount32;
 | |
| typedef BitCountN<64, uint64_t> BitCount64;
 | |
| typedef BitCountN<sizeof(uint) * 8, uint> BitCount;
 | |
| 
 | |
| typedef ByteCountN<8, uint8_t> ByteCount8;
 | |
| typedef ByteCountN<16, uint16_t> ByteCount16;
 | |
| typedef ByteCountN<32, uint32_t> ByteCount32;
 | |
| typedef ByteCountN<64, uint64_t> ByteCount64;
 | |
| typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;
 | |
| 
 | |
| typedef WordCountN<8, uint8_t> WordCount8;
 | |
| typedef WordCountN<16, uint16_t> WordCount16;
 | |
| typedef WordCountN<32, uint32_t> WordCount32;
 | |
| typedef WordCountN<64, uint64_t> WordCount64;
 | |
| typedef WordCountN<sizeof(uint) * 8, uint> WordCount;
 | |
| 
 | |
| typedef ElementCountN<8, uint8_t> ElementCount8;
 | |
| typedef ElementCountN<16, uint16_t> ElementCount16;
 | |
| typedef ElementCountN<32, uint32_t> ElementCount32;
 | |
| typedef ElementCountN<64, uint64_t> ElementCount64;
 | |
| typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;
 | |
| 
 | |
| typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
 | |
| typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
 | |
| typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
 | |
| typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
 | |
| typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;
 | |
| 
 | |
| template <uint width>
 | |
| using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
 | |
| template <uint width>
 | |
| using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
 | |
| template <uint width>
 | |
| using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
 | |
| template <uint width>
 | |
| using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());
 | |
| 
 | |
| using kj::ThrowOverflow;
 | |
| // YYY
 | |
| 
 | |
| template <uint i> inline constexpr uint bounded() { return i; }
 | |
| template <typename T> inline constexpr T bounded(T i) { return i; }
 | |
| template <typename T> inline constexpr T unbound(T i) { return i; }
 | |
| 
 | |
| template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; }
 | |
| 
 | |
| template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; }
 | |
| template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; }
 | |
| 
 | |
| template <uint newMax, typename T, typename ErrorFunc>
 | |
| inline T assertMax(T value, ErrorFunc&& func) {
 | |
|   if (KJ_UNLIKELY(value > newMax)) func();
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename ErrorFunc>
 | |
| inline T assertMax(uint newMax, T value, ErrorFunc&& func) {
 | |
|   if (KJ_UNLIKELY(value > newMax)) func();
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| template <uint bits, typename T, typename ErrorFunc = ThrowOverflow>
 | |
| inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) {
 | |
|   if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func();
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename ErrorFunc = ThrowOverflow>
 | |
| inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) {
 | |
|   if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func();
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; }
 | |
| 
 | |
| template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; }
 | |
| template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; }
 | |
| 
 | |
| template <typename T, typename U, typename ErrorFunc = ThrowOverflow>
 | |
| inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc())
 | |
|     -> decltype(a - b) {
 | |
|   if (b > a) errorFunc();
 | |
|   return a - b;
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> {
 | |
|   if (b > a) {
 | |
|     return nullptr;
 | |
|   } else {
 | |
|     return a - b;
 | |
|   }
 | |
| }
 | |
| 
 | |
| constexpr uint BITS = 1;
 | |
| constexpr uint BYTES = 1;
 | |
| constexpr uint WORDS = 1;
 | |
| constexpr uint ELEMENTS = 1;
 | |
| constexpr uint POINTERS = 1;
 | |
| 
 | |
| constexpr uint ZERO = 0;
 | |
| constexpr uint ONE = 1;
 | |
| 
 | |
| // GCC 4.7 actually gives unused warnings on these constants in opt mode...
 | |
| constexpr uint BITS_PER_BYTE KJ_UNUSED = 8;
 | |
| constexpr uint BITS_PER_WORD KJ_UNUSED = 64;
 | |
| constexpr uint BYTES_PER_WORD KJ_UNUSED = 8;
 | |
| 
 | |
| constexpr uint BITS_PER_POINTER KJ_UNUSED = 64;
 | |
| constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8;
 | |
| constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1;
 | |
| 
 | |
| // XXX
 | |
| constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;
 | |
| 
 | |
| constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment.
 | |
| constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list.
 | |
| constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section.
 | |
| constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section.
 | |
| constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob.
 | |
| 
 | |
| typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
 | |
| typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
 | |
| typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
 | |
| typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
 | |
| typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
 | |
| // YYY
 | |
| 
 | |
| constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>();
 | |
| constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>();
 | |
| constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>();
 | |
| constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>();
 | |
| 
 | |
| typedef uint StructDataBitCount;
 | |
| typedef uint StructDataOffset;
 | |
| typedef uint StructPointerOffset;
 | |
| 
 | |
| inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; }
 | |
| inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; }
 | |
| 
 | |
| constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
 | |
| typedef uint TextSize;
 | |
| 
 | |
| template <typename T>
 | |
| inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); }
 | |
| 
 | |
| template <typename T>
 | |
| inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; }
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) {
 | |
|   return b - a;
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) {
 | |
|   return kj::arrayPtr(ptr, size);
 | |
| }
 | |
| template <typename T, typename U>
 | |
| inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) {
 | |
|   return kj::arrayPtr(ptr, size);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }  // namespace capnp
 | |
| 
 | |
| #endif  // CAPNP_COMMON_H_
 | |
| 
 |