You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							364 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
	
	
							364 lines
						
					
					
						
							15 KiB
						
					
					
				| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
 | |
| // Licensed under the MIT License:
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| // This file defines a notion of tuples that is simpler that `std::tuple`.  It works as follows:
 | |
| // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
 | |
| // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c.  If any of these are themselves
 | |
| //   tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
 | |
| // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
 | |
| // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
 | |
| //   in the argument list.  So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
 | |
| //
 | |
| // Note that:
 | |
| // - The type `Tuple<T>` is a synonym for T.  This is why `get` and `apply` are not members of the
 | |
| //   type.
 | |
| // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
 | |
| //   flattened.
 | |
| // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
 | |
| //   with type inference and `tuple()`.
 | |
| 
 | |
| #ifndef KJ_TUPLE_H_
 | |
| #define KJ_TUPLE_H_
 | |
| 
 | |
| #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
 | |
| #pragma GCC system_header
 | |
| #endif
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| namespace kj {
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <size_t index, typename... T>
 | |
| struct TypeByIndex_;
 | |
| template <typename First, typename... Rest>
 | |
| struct TypeByIndex_<0, First, Rest...> {
 | |
|   typedef First Type;
 | |
| };
 | |
| template <size_t index, typename First, typename... Rest>
 | |
| struct TypeByIndex_<index, First, Rest...>
 | |
|     : public TypeByIndex_<index - 1, Rest...> {};
 | |
| template <size_t index>
 | |
| struct TypeByIndex_<index> {
 | |
|   static_assert(index != index, "Index out-of-range.");
 | |
| };
 | |
| template <size_t index, typename... T>
 | |
| using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
 | |
| // Chose a particular type out of a list of types, by index.
 | |
| 
 | |
| template <size_t... s>
 | |
| struct Indexes {};
 | |
| // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
 | |
| // templates against them and unpack them with '...'.
 | |
| 
 | |
| template <size_t end, size_t... prefix>
 | |
| struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
 | |
| template <size_t... prefix>
 | |
| struct MakeIndexes_<0, prefix...> {
 | |
|   typedef Indexes<prefix...> Type;
 | |
| };
 | |
| template <size_t end>
 | |
| using MakeIndexes = typename MakeIndexes_<end>::Type;
 | |
| // Equivalent to Indexes<0, 1, 2, ..., end>.
 | |
| 
 | |
| template <typename... T>
 | |
| class Tuple;
 | |
| template <size_t index, typename... U>
 | |
| inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
 | |
| template <size_t index, typename... U>
 | |
| inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
 | |
| template <size_t index, typename... U>
 | |
| inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
 | |
| 
 | |
| template <uint index, typename T>
 | |
| struct TupleElement {
 | |
|   // Encapsulates one element of a tuple.  The actual tuple implementation multiply-inherits
 | |
|   // from a TupleElement for each element, which is more efficient than a recursive definition.
 | |
| 
 | |
|   T value;
 | |
|   TupleElement() = default;
 | |
|   constexpr inline TupleElement(const T& value): value(value) {}
 | |
|   constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
 | |
| };
 | |
| 
 | |
| template <uint index, typename T>
 | |
| struct TupleElement<index, T&> {
 | |
|   // If tuples contained references, one of the following would have to be true:
 | |
|   // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
 | |
|   //   probably not what you expected.
 | |
|   // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
 | |
|   //   Tuple<Foo, Bar>.
 | |
|   static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
 | |
| };
 | |
| 
 | |
| template <uint index, typename... T>
 | |
| struct TupleElement<index, Tuple<T...>> {
 | |
|   static_assert(sizeof(Tuple<T...>*) == 0,
 | |
|                 "Tuples cannot contain other tuples -- they should be flattened.");
 | |
| };
 | |
| 
 | |
| template <typename Indexes, typename... Types>
 | |
| struct TupleImpl;
 | |
| 
 | |
| template <size_t... indexes, typename... Types>
 | |
| struct TupleImpl<Indexes<indexes...>, Types...>
 | |
|     : public TupleElement<indexes, Types>... {
 | |
|   // Implementation of Tuple.  The only reason we need this rather than rolling this into class
 | |
|   // Tuple (below) is so that we can get "indexes" as an unpackable list.
 | |
| 
 | |
|   static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
 | |
| 
 | |
|   template <typename... Params>
 | |
|   inline TupleImpl(Params&&... params)
 | |
|       : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
 | |
|     // Work around Clang 3.2 bug 16303 where this is not detected.  (Unfortunately, Clang sometimes
 | |
|     // segfaults instead.)
 | |
|     static_assert(sizeof...(params) == sizeof...(indexes),
 | |
|                   "Wrong number of parameters to Tuple constructor.");
 | |
|   }
 | |
| 
 | |
|   template <typename... U>
 | |
|   constexpr inline TupleImpl(Tuple<U...>&& other)
 | |
|       : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
 | |
|   template <typename... U>
 | |
|   constexpr inline TupleImpl(Tuple<U...>& other)
 | |
|       : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
 | |
|   template <typename... U>
 | |
|   constexpr inline TupleImpl(const Tuple<U...>& other)
 | |
|       : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
 | |
| };
 | |
| 
 | |
| struct MakeTupleFunc;
 | |
| 
 | |
| template <typename... T>
 | |
| class Tuple {
 | |
|   // The actual Tuple class (used for tuples of size other than 1).
 | |
| 
 | |
| public:
 | |
|   template <typename... U>
 | |
|   constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
 | |
|   template <typename... U>
 | |
|   constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
 | |
|   template <typename... U>
 | |
|   constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
 | |
| 
 | |
| private:
 | |
|   template <typename... Params>
 | |
|   constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
 | |
| 
 | |
|   TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
 | |
| 
 | |
|   template <size_t index, typename... U>
 | |
|   friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
 | |
|   template <size_t index, typename... U>
 | |
|   friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
 | |
|   template <size_t index, typename... U>
 | |
|   friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
 | |
|   friend struct MakeTupleFunc;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| class Tuple<> {
 | |
|   // Simplified zero-member version of Tuple.  In particular this is important to make sure that
 | |
|   // Tuple<>() is constexpr.
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class Tuple<T>;
 | |
| // Single-element tuple should never be used.  The public API should ensure this.
 | |
| 
 | |
| template <size_t index, typename... T>
 | |
| inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
 | |
|   // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
 | |
|   static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
 | |
|   return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
 | |
| }
 | |
| template <size_t index, typename... T>
 | |
| inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
 | |
|   // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
 | |
|   static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
 | |
|   return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
 | |
| }
 | |
| template <size_t index, typename... T>
 | |
| inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
 | |
|   // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
 | |
|   static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
 | |
|   return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
 | |
| }
 | |
| template <size_t index, typename T>
 | |
| inline T&& getImpl(T&& value) {
 | |
|   // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
 | |
| 
 | |
|   // Non-tuples are equivalent to one-element tuples.
 | |
|   static_assert(index == 0, "Tuple element index out-of-bounds.");
 | |
|   return kj::fwd<T>(value);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename Func, typename SoFar, typename... T>
 | |
| struct ExpandAndApplyResult_;
 | |
| // Template which computes the return type of applying Func to T... after flattening tuples.
 | |
| // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
 | |
| // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
 | |
| 
 | |
| template <typename Func, typename First, typename... Rest, typename... T>
 | |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
 | |
|     : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
 | |
| template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
 | |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
 | |
|     : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
 | |
| template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
 | |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
 | |
|     : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
 | |
| template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
 | |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
 | |
|     : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
 | |
| template <typename Func, typename... T>
 | |
| struct ExpandAndApplyResult_<Func, Tuple<T...>> {
 | |
|   typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
 | |
| };
 | |
| template <typename Func, typename... T>
 | |
| using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
 | |
| // Computes the expected return type of `expandAndApply()`.
 | |
| 
 | |
| template <typename Func>
 | |
| inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
 | |
|   return func();
 | |
| }
 | |
| 
 | |
| template <typename Func, typename First, typename... Rest>
 | |
| struct ExpandAndApplyFunc {
 | |
|   Func&& func;
 | |
|   First&& first;
 | |
|   ExpandAndApplyFunc(Func&& func, First&& first)
 | |
|       : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
 | |
|   template <typename... T>
 | |
|   auto operator()(T&&... params)
 | |
|       -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
 | |
|     return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Func, typename First, typename... Rest>
 | |
| inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
 | |
|     -> ExpandAndApplyResult<Func, First, Rest...> {
 | |
| 
 | |
|   return expandAndApply(
 | |
|       ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
 | |
|       kj::fwd<Rest>(rest)...);
 | |
| }
 | |
| 
 | |
| template <typename Func, typename... FirstTypes, typename... Rest>
 | |
| inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
 | |
|     -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
 | |
|   return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
 | |
|       kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
 | |
| }
 | |
| 
 | |
| template <typename Func, typename... FirstTypes, typename... Rest>
 | |
| inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
 | |
|     -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
 | |
|   return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
 | |
|       kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
 | |
| }
 | |
| 
 | |
| template <typename Func, typename... FirstTypes, typename... Rest>
 | |
| inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
 | |
|     -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
 | |
|   return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
 | |
|       kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
 | |
| }
 | |
| 
 | |
| template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
 | |
| inline auto expandAndApplyWithIndexes(
 | |
|     Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
 | |
|     -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
 | |
|   return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
 | |
|                         kj::fwd<Rest>(rest)...);
 | |
| }
 | |
| 
 | |
| template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
 | |
| inline auto expandAndApplyWithIndexes(
 | |
|     Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
 | |
|     -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
 | |
|   return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
 | |
|                        kj::fwd<Rest>(rest)...);
 | |
| }
 | |
| 
 | |
| struct MakeTupleFunc {
 | |
|   template <typename... Params>
 | |
|   Tuple<Decay<Params>...> operator()(Params&&... params) {
 | |
|     return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
 | |
|   }
 | |
|   template <typename Param>
 | |
|   Decay<Param> operator()(Param&& param) {
 | |
|     return kj::fwd<Param>(param);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
 | |
| template <typename T> struct Tuple_<T> { typedef T Type; };
 | |
| 
 | |
| template <typename... T> using Tuple = typename Tuple_<T...>::Type;
 | |
| // Tuple type.  `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`.  Tuples of size
 | |
| // other than 1 expand to an internal type.  Either way, you can construct a Tuple using
 | |
| // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
 | |
| // as arguments to a function using `kj::apply(func, myTuple)`.
 | |
| //
 | |
| // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple.  If you
 | |
| // construct a tuple from other tuples, the elements are flattened and concatenated.
 | |
| 
 | |
| template <typename... Params>
 | |
| inline auto tuple(Params&&... params)
 | |
|     -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
 | |
|   // Construct a new tuple from the given values.  Any tuples in the argument list will be
 | |
|   // flattened into the result.
 | |
|   return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
 | |
| }
 | |
| 
 | |
| template <size_t index, typename Tuple>
 | |
| inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
 | |
|   // Unpack and return the tuple element at the given index.  The index is specified as a template
 | |
|   // parameter, e.g. `kj::get<3>(myTuple)`.
 | |
|   return _::getImpl<index>(kj::fwd<Tuple>(tuple));
 | |
| }
 | |
| 
 | |
| template <typename Func, typename... Params>
 | |
| inline auto apply(Func&& func, Params&&... params)
 | |
|     -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
 | |
|   // Apply a function to some arguments, expanding tuples into separate arguments.
 | |
|   return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
 | |
| }
 | |
| 
 | |
| template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
 | |
| template <typename... T> struct TupleSize_<_::Tuple<T...>> {
 | |
|   static constexpr size_t size = sizeof...(T);
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| constexpr size_t tupleSize() { return TupleSize_<T>::size; }
 | |
| // Returns size of the tuple T.
 | |
| 
 | |
| }  // namespace kj
 | |
| 
 | |
| #endif  // KJ_TUPLE_H_
 | |
| 
 |