You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							108 lines
						
					
					
						
							3.3 KiB
						
					
					
				
			
		
		
	
	
							108 lines
						
					
					
						
							3.3 KiB
						
					
					
				#include "acado_common.h"
 | 
						|
#include "acado_auxiliary_functions.h"
 | 
						|
#include "common/modeldata.h"
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#define NX          ACADO_NX  /* Number of differential state variables.  */
 | 
						|
#define NXA         ACADO_NXA /* Number of algebraic variables. */
 | 
						|
#define NU          ACADO_NU  /* Number of control inputs. */
 | 
						|
#define NOD         ACADO_NOD  /* Number of online data values. */
 | 
						|
 | 
						|
#define NY          ACADO_NY  /* Number of measurements/references on nodes 0..N - 1. */
 | 
						|
#define NYN         ACADO_NYN /* Number of measurements/references on node N. */
 | 
						|
 | 
						|
#define N           ACADO_N   /* Number of intervals in the horizon. */
 | 
						|
 | 
						|
ACADOvariables acadoVariables;
 | 
						|
ACADOworkspace acadoWorkspace;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  double x_ego, v_ego, a_ego;
 | 
						|
} state_t;
 | 
						|
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  double x_ego[N+1];
 | 
						|
  double v_ego[N+1];
 | 
						|
  double a_ego[N+1];
 | 
						|
  double t[N+1];
 | 
						|
  double j_ego[N];
 | 
						|
  double cost;
 | 
						|
} log_t;
 | 
						|
 | 
						|
void init(double xCost, double vCost, double aCost, double jerkCost, double constraintCost){
 | 
						|
  acado_initializeSolver();
 | 
						|
  int    i;
 | 
						|
  const int STEP_MULTIPLIER = 3;
 | 
						|
 | 
						|
  /* Initialize the states and controls. */
 | 
						|
  for (i = 0; i < NX * (N + 1); ++i)  acadoVariables.x[ i ] = 0.0;
 | 
						|
  for (i = 0; i < NU * N; ++i)  acadoVariables.u[ i ] = 0.0;
 | 
						|
 | 
						|
  /* Initialize the measurements/reference. */
 | 
						|
  for (i = 0; i < NY * N; ++i)  acadoVariables.y[ i ] = 0.0;
 | 
						|
  for (i = 0; i < NYN; ++i)  acadoVariables.yN[ i ] = 0.0;
 | 
						|
 | 
						|
  /* MPC: initialize the current state feedback. */
 | 
						|
  for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
 | 
						|
  
 | 
						|
  // Set weights
 | 
						|
  for (i = 0; i < N; i++) {
 | 
						|
    double f = 20 * (T_IDXS[i+1] - T_IDXS[i]);
 | 
						|
    // Setup diagonal entries
 | 
						|
    acadoVariables.W[NY*NY*i + (NY+1)*0] = xCost * f;
 | 
						|
    acadoVariables.W[NY*NY*i + (NY+1)*1] = vCost * f;
 | 
						|
    acadoVariables.W[NY*NY*i + (NY+1)*2] = aCost * f;
 | 
						|
    acadoVariables.W[NY*NY*i + (NY+1)*3] = jerkCost * f;
 | 
						|
    acadoVariables.W[NY*NY*i + (NY+1)*4] = constraintCost * f;
 | 
						|
  }
 | 
						|
  acadoVariables.WN[(NYN+1)*0] = xCost * STEP_MULTIPLIER;
 | 
						|
  acadoVariables.WN[(NYN+1)*1] = vCost * STEP_MULTIPLIER;
 | 
						|
  acadoVariables.WN[(NYN+1)*2] = aCost * STEP_MULTIPLIER;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int run_mpc(state_t * x0, log_t * solution,
 | 
						|
            double target_x[N+1], double target_v[N+1], double target_a[N+1],
 | 
						|
            double min_a, double max_a){
 | 
						|
  int i;
 | 
						|
  for (i = 0; i < N + 1; ++i){
 | 
						|
    acadoVariables.od[i*NOD] = min_a;
 | 
						|
    acadoVariables.od[i*NOD+1] = max_a;
 | 
						|
  }
 | 
						|
  for (i = 0; i < N; i+= 1){
 | 
						|
    acadoVariables.y[NY*i + 0] = target_x[i];
 | 
						|
    acadoVariables.y[NY*i + 1] = target_v[i];
 | 
						|
    acadoVariables.y[NY*i + 2] = target_a[i];
 | 
						|
    acadoVariables.y[NY*i + 3] = 0.0;
 | 
						|
    acadoVariables.y[NY*i + 4] = 0.0;
 | 
						|
  }
 | 
						|
  acadoVariables.yN[0] = target_x[N];
 | 
						|
  acadoVariables.yN[1] = target_v[N];
 | 
						|
  acadoVariables.yN[2] = target_a[N];
 | 
						|
 | 
						|
  acadoVariables.x0[0] = x0->x_ego;
 | 
						|
  acadoVariables.x0[1] = x0->v_ego;
 | 
						|
  acadoVariables.x0[2] = x0->a_ego;
 | 
						|
 | 
						|
  acado_preparationStep();
 | 
						|
  acado_feedbackStep();
 | 
						|
 | 
						|
  for (i = 0; i <= N; i++) {
 | 
						|
    solution->x_ego[i] = acadoVariables.x[i*NX];
 | 
						|
    solution->v_ego[i] = acadoVariables.x[i*NX+1];
 | 
						|
    solution->a_ego[i] = acadoVariables.x[i*NX+2];
 | 
						|
 | 
						|
    if (i < N) {
 | 
						|
      solution->j_ego[i] = acadoVariables.u[i*NU];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  solution->cost = acado_getObjective();
 | 
						|
 | 
						|
  // Dont shift states here. Current solution is closer to next timestep than if
 | 
						|
  // we shift by 0.1 seconds.
 | 
						|
  return acado_getNWSR();
 | 
						|
}
 | 
						|
 |