You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1400 lines
						
					
					
						
							50 KiB
						
					
					
				
			
		
		
	
	
							1400 lines
						
					
					
						
							50 KiB
						
					
					
				| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
 | |
| // Licensed under the MIT License:
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| // Header that should be #included by everyone.
 | |
| //
 | |
| // This defines very simple utilities that are widely applicable.
 | |
| 
 | |
| #ifndef KJ_COMMON_H_
 | |
| #define KJ_COMMON_H_
 | |
| 
 | |
| #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
 | |
| #pragma GCC system_header
 | |
| #endif
 | |
| 
 | |
| #ifndef KJ_NO_COMPILER_CHECK
 | |
| #if __cplusplus < 201103L && !__CDT_PARSER__ && !_MSC_VER
 | |
|   #error "This code requires C++11. Either your compiler does not support it or it is not enabled."
 | |
|   #ifdef __GNUC__
 | |
|     // Compiler claims compatibility with GCC, so presumably supports -std.
 | |
|     #error "Pass -std=c++11 on the compiler command line to enable C++11."
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __GNUC__
 | |
|   #if __clang__
 | |
|     #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
 | |
|       #warning "This library requires at least Clang 3.2."
 | |
|     #elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
 | |
|       #warning "This library requires at least Clang 3.2.  XCode 4.6's Clang, which claims to be "\
 | |
|                "version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
 | |
|                "and 3.2.  Unfortunately, it is insufficient for compiling this library.  You can "\
 | |
|                "download the real Clang 3.2 (or newer) from the Clang web site.  Step-by-step "\
 | |
|                "instructions can be found in Cap'n Proto's documentation: "\
 | |
|                "http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
 | |
|     #elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
 | |
|       #warning "Your compiler supports C++11 but your C++ standard library does not.  If your "\
 | |
|                "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
 | |
|                "-stdlib=libc++ to your CXXFLAGS."
 | |
|     #endif
 | |
|   #else
 | |
|     #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
 | |
|       #warning "This library requires at least GCC 4.7."
 | |
|     #endif
 | |
|   #endif
 | |
| #elif defined(_MSC_VER)
 | |
|   #if _MSC_VER < 1900
 | |
|     #error "You need Visual Studio 2015 or better to compile this code."
 | |
|   #endif
 | |
| #else
 | |
|   #warning "I don't recognize your compiler.  As of this writing, Clang and GCC are the only "\
 | |
|            "known compilers with enough C++11 support for this library.  "\
 | |
|            "#define KJ_NO_COMPILER_CHECK to make this warning go away."
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <initializer_list>
 | |
| 
 | |
| #if __linux__ && __cplusplus > 201200L
 | |
| // Hack around stdlib bug with C++14 that exists on some Linux systems.
 | |
| // Apparently in this mode the C library decides not to define gets() but the C++ library still
 | |
| // tries to import it into the std namespace. This bug has been fixed at the source but is still
 | |
| // widely present in the wild e.g. on Ubuntu 14.04.
 | |
| #undef _GLIBCXX_HAVE_GETS
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX 1
 | |
| #endif
 | |
| #include <intrin.h>  // __popcnt
 | |
| #endif
 | |
| 
 | |
| // =======================================================================================
 | |
| 
 | |
| namespace kj {
 | |
| 
 | |
| typedef unsigned int uint;
 | |
| typedef unsigned char byte;
 | |
| 
 | |
| // =======================================================================================
 | |
| // Common macros, especially for common yet compiler-specific features.
 | |
| 
 | |
| // Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
 | |
| // evidence to the contrary.  Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
 | |
| // to override these checks.
 | |
| #ifdef __GNUC__
 | |
|   #if !defined(KJ_NO_RTTI) && !__GXX_RTTI
 | |
|     #define KJ_NO_RTTI 1
 | |
|   #endif
 | |
|   #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
 | |
|     #define KJ_NO_EXCEPTIONS 1
 | |
|   #endif
 | |
| #elif defined(_MSC_VER)
 | |
|   #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
 | |
|     #define KJ_NO_RTTI 1
 | |
|   #endif
 | |
|   #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
 | |
|     #define KJ_NO_EXCEPTIONS 1
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
 | |
| // Heuristically decide whether to enable debug mode.  If DEBUG or NDEBUG is defined, use that.
 | |
| // Otherwise, fall back to checking whether optimization is enabled.
 | |
| #if defined(DEBUG) || defined(_DEBUG)
 | |
| #define KJ_DEBUG
 | |
| #elif defined(NDEBUG)
 | |
| #define KJ_NDEBUG
 | |
| #elif __OPTIMIZE__
 | |
| #define KJ_NDEBUG
 | |
| #else
 | |
| #define KJ_DEBUG
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #define KJ_DISALLOW_COPY(classname) \
 | |
|   classname(const classname&) = delete; \
 | |
|   classname& operator=(const classname&) = delete
 | |
| // Deletes the implicit copy constructor and assignment operator.
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #define KJ_LIKELY(condition) __builtin_expect(condition, true)
 | |
| #define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
 | |
| // Branch prediction macros.  Evaluates to the condition given, but also tells the compiler that we
 | |
| // expect the condition to be true/false enough of the time that it's worth hard-coding branch
 | |
| // prediction.
 | |
| #else
 | |
| #define KJ_LIKELY(condition) (condition)
 | |
| #define KJ_UNLIKELY(condition) (condition)
 | |
| #endif
 | |
| 
 | |
| #if defined(KJ_DEBUG) || __NO_INLINE__
 | |
| #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__
 | |
| // Don't force inline in debug mode.
 | |
| #else
 | |
| #if defined(_MSC_VER)
 | |
| #define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__
 | |
| #else
 | |
| #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline))
 | |
| #endif
 | |
| // Force a function to always be inlined.  Apply only to the prototype, not to the definition.
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #define KJ_NOINLINE __declspec(noinline)
 | |
| #else
 | |
| #define KJ_NOINLINE __attribute__((noinline))
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #define KJ_NORETURN(prototype) __declspec(noreturn) prototype
 | |
| #define KJ_UNUSED
 | |
| #define KJ_WARN_UNUSED_RESULT
 | |
| // TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so
 | |
| //   wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx
 | |
| //   Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix.
 | |
| #else
 | |
| #define KJ_NORETURN(prototype) prototype __attribute__((noreturn))
 | |
| #define KJ_UNUSED __attribute__((unused))
 | |
| #define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
 | |
| #endif
 | |
| 
 | |
| #if __clang__
 | |
| #define KJ_UNUSED_MEMBER __attribute__((unused))
 | |
| // Inhibits "unused" warning for member variables.  Only Clang produces such a warning, while GCC
 | |
| // complains if the attribute is set on members.
 | |
| #else
 | |
| #define KJ_UNUSED_MEMBER
 | |
| #endif
 | |
| 
 | |
| #if __clang__
 | |
| #define KJ_DEPRECATED(reason) \
 | |
|     __attribute__((deprecated(reason)))
 | |
| #define KJ_UNAVAILABLE(reason) \
 | |
|     __attribute__((unavailable(reason)))
 | |
| #elif __GNUC__
 | |
| #define KJ_DEPRECATED(reason) \
 | |
|     __attribute__((deprecated))
 | |
| #define KJ_UNAVAILABLE(reason)
 | |
| #else
 | |
| #define KJ_DEPRECATED(reason)
 | |
| #define KJ_UNAVAILABLE(reason)
 | |
| // TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated).
 | |
| #endif
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| KJ_NORETURN(void inlineRequireFailure(
 | |
|     const char* file, int line, const char* expectation, const char* macroArgs,
 | |
|     const char* message = nullptr));
 | |
| 
 | |
| KJ_NORETURN(void unreachable());
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| #ifdef KJ_DEBUG
 | |
| #if _MSC_VER
 | |
| #define KJ_IREQUIRE(condition, ...) \
 | |
|     if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
 | |
|         __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__)
 | |
| // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
 | |
| // check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
 | |
| // it will be enabled depending on whether the application is compiled in debug mode rather than
 | |
| // whether libkj is.
 | |
| #else
 | |
| #define KJ_IREQUIRE(condition, ...) \
 | |
|     if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
 | |
|         __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
 | |
| // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
 | |
| // check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
 | |
| // it will be enabled depending on whether the application is compiled in debug mode rather than
 | |
| // whether libkj is.
 | |
| #endif
 | |
| #else
 | |
| #define KJ_IREQUIRE(condition, ...)
 | |
| #endif
 | |
| 
 | |
| #define KJ_IASSERT KJ_IREQUIRE
 | |
| 
 | |
| #define KJ_UNREACHABLE ::kj::_::unreachable();
 | |
| // Put this on code paths that cannot be reached to suppress compiler warnings about missing
 | |
| // returns.
 | |
| 
 | |
| #if __clang__
 | |
| #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
 | |
| #else
 | |
| #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
 | |
| #endif
 | |
| 
 | |
| // #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
 | |
| //
 | |
| // Allocate an array, preferably on the stack, unless it is too big.  On GCC this will use
 | |
| // variable-sized arrays.  For other compilers we could just use a fixed-size array.  `minStack`
 | |
| // is the stack array size to use if variable-width arrays are not supported.  `maxStack` is the
 | |
| // maximum stack array size if variable-width arrays *are* supported.
 | |
| #if __GNUC__ && !__clang__
 | |
| #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
 | |
|   size_t name##_size = (size); \
 | |
|   bool name##_isOnStack = name##_size <= (maxStack); \
 | |
|   type name##_stack[name##_isOnStack ? size : 0]; \
 | |
|   ::kj::Array<type> name##_heap = name##_isOnStack ? \
 | |
|       nullptr : kj::heapArray<type>(name##_size); \
 | |
|   ::kj::ArrayPtr<type> name = name##_isOnStack ? \
 | |
|       kj::arrayPtr(name##_stack, name##_size) : name##_heap
 | |
| #else
 | |
| #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
 | |
|   size_t name##_size = (size); \
 | |
|   bool name##_isOnStack = name##_size <= (minStack); \
 | |
|   type name##_stack[minStack]; \
 | |
|   ::kj::Array<type> name##_heap = name##_isOnStack ? \
 | |
|       nullptr : kj::heapArray<type>(name##_size); \
 | |
|   ::kj::ArrayPtr<type> name = name##_isOnStack ? \
 | |
|       kj::arrayPtr(name##_stack, name##_size) : name##_heap
 | |
| #endif
 | |
| 
 | |
| #define KJ_CONCAT_(x, y) x##y
 | |
| #define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
 | |
| #define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
 | |
| // Create a unique identifier name.  We use concatenate __LINE__ rather than __COUNTER__ so that
 | |
| // the name can be used multiple times in the same macro.
 | |
| 
 | |
| #if _MSC_VER
 | |
| 
 | |
| #define KJ_CONSTEXPR(...) __VA_ARGS__
 | |
| // Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be
 | |
| // provided, or just leave blank to remove the keyword entirely.
 | |
| //
 | |
| // TODO(msvc): Remove this hack once MSVC fully supports constexpr.
 | |
| 
 | |
| #ifndef __restrict__
 | |
| #define __restrict__ __restrict
 | |
| // TODO(msvc): Would it be better to define a KJ_RESTRICT macro?
 | |
| #endif
 | |
| 
 | |
| #pragma warning(disable: 4521 4522)
 | |
| // This warning complains when there are two copy constructors, one for a const reference and
 | |
| // one for a non-const reference. It is often quite necessary to do this in wrapper templates,
 | |
| // therefore this warning is dumb and we disable it.
 | |
| 
 | |
| #pragma warning(disable: 4458)
 | |
| // Warns when a parameter name shadows a class member. Unfortunately my code does this a lot,
 | |
| // since I don't use a special name format for members.
 | |
| 
 | |
| #else  // _MSC_VER
 | |
| #define KJ_CONSTEXPR(...) constexpr
 | |
| #endif
 | |
| 
 | |
| // =======================================================================================
 | |
| // Template metaprogramming helpers.
 | |
| 
 | |
| template <typename T> struct NoInfer_ { typedef T Type; };
 | |
| template <typename T> using NoInfer = typename NoInfer_<T>::Type;
 | |
| // Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
 | |
| // the type based on the parameter value.
 | |
| 
 | |
| template <typename T> struct RemoveConst_ { typedef T Type; };
 | |
| template <typename T> struct RemoveConst_<const T> { typedef T Type; };
 | |
| template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;
 | |
| 
 | |
| template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
 | |
| template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
 | |
| template <typename T>
 | |
| inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }
 | |
| 
 | |
| template <typename T> struct Decay_ { typedef T Type; };
 | |
| template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
 | |
| template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
 | |
| template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
 | |
| template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
 | |
| template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
 | |
| template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
 | |
| template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
 | |
| template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
 | |
| template <typename T> using Decay = typename Decay_<T>::Type;
 | |
| 
 | |
| template <bool b> struct EnableIf_;
 | |
| template <> struct EnableIf_<true> { typedef void Type; };
 | |
| template <bool b> using EnableIf = typename EnableIf_<b>::Type;
 | |
| // Use like:
 | |
| //
 | |
| //     template <typename T, typename = EnableIf<isValid<T>()>
 | |
| //     void func(T&& t);
 | |
| 
 | |
| template <typename...> struct VoidSfinae_ { using Type = void; };
 | |
| template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type;
 | |
| // Note: VoidSfinae is std::void_t from C++17.
 | |
| 
 | |
| template <typename T>
 | |
| T instance() noexcept;
 | |
| // Like std::declval, but doesn't transform T into an rvalue reference.  If you want that, specify
 | |
| // instance<T&&>().
 | |
| 
 | |
| struct DisallowConstCopy {
 | |
|   // Inherit from this, or declare a member variable of this type, to prevent the class from being
 | |
|   // copyable from a const reference -- instead, it will only be copyable from non-const references.
 | |
|   // This is useful for enforcing transitive constness of contained pointers.
 | |
|   //
 | |
|   // For example, say you have a type T which contains a pointer.  T has non-const methods which
 | |
|   // modify the value at that pointer, but T's const methods are designed to allow reading only.
 | |
|   // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
 | |
|   // then use it to modify the pointed-to value.  However, if T inherits DisallowConstCopy, then
 | |
|   // callers will only be able to copy non-const instances of T.  Ideally, there is some
 | |
|   // parallel type ImmutableT which is like a version of T that only has const methods, and can
 | |
|   // be copied from a const T.
 | |
|   //
 | |
|   // Note that due to C++ rules about implicit copy constructors and assignment operators, any
 | |
|   // type that contains or inherits from a type that disallows const copies will also automatically
 | |
|   // disallow const copies.  Hey, cool, that's exactly what we want.
 | |
| 
 | |
| #if CAPNP_DEBUG_TYPES
 | |
|   // Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and
 | |
|   // Clang to disagree on ABI, using different calling conventions to pass this type, leading to
 | |
|   // immediate segfaults. See:
 | |
|   //     https://bugs.llvm.org/show_bug.cgi?id=23764
 | |
|   //     https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074
 | |
|   //
 | |
|   // Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it
 | |
|   // still applies to the Cap'n Proto developers during internal testing.
 | |
| 
 | |
|   DisallowConstCopy() = default;
 | |
|   DisallowConstCopy(DisallowConstCopy&) = default;
 | |
|   DisallowConstCopy(DisallowConstCopy&&) = default;
 | |
|   DisallowConstCopy& operator=(DisallowConstCopy&) = default;
 | |
|   DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #if _MSC_VER
 | |
| 
 | |
| #define KJ_CPCAP(obj) obj=::kj::cp(obj)
 | |
| // TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda
 | |
| // captures. Wrap your captured object in this macro to force the compiler to perform a copy.
 | |
| // Example:
 | |
| //
 | |
| //   struct Foo: DisallowConstCopy {};
 | |
| //   Foo foo;
 | |
| //   auto lambda = [KJ_CPCAP(foo)] {};
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define KJ_CPCAP(obj) obj
 | |
| // Clang and gcc both already perform copy capturing correctly with non-const copy constructors.
 | |
| 
 | |
| #endif
 | |
| 
 | |
| template <typename T>
 | |
| struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
 | |
|   // Inherit from this when implementing a template that contains a pointer to T and which should
 | |
|   // enforce transitive constness.  If T is a const type, this has no effect.  Otherwise, it is
 | |
|   // an alias for DisallowConstCopy.
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct DisallowConstCopyIfNotConst<const T> {};
 | |
| 
 | |
| template <typename T> struct IsConst_ { static constexpr bool value = false; };
 | |
| template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
 | |
| template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }
 | |
| 
 | |
| template <typename T> struct EnableIfNotConst_ { typedef T Type; };
 | |
| template <typename T> struct EnableIfNotConst_<const T>;
 | |
| template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;
 | |
| 
 | |
| template <typename T> struct EnableIfConst_;
 | |
| template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
 | |
| template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
 | |
| 
 | |
| template <typename T> struct RemoveConstOrDisable_ { struct Type; };
 | |
| template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
 | |
| template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
 | |
| 
 | |
| template <typename T> struct IsReference_ { static constexpr bool value = false; };
 | |
| template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
 | |
| template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }
 | |
| 
 | |
| template <typename From, typename To>
 | |
| struct PropagateConst_ { typedef To Type; };
 | |
| template <typename From, typename To>
 | |
| struct PropagateConst_<const From, To> { typedef const To Type; };
 | |
| template <typename From, typename To>
 | |
| using PropagateConst = typename PropagateConst_<From, To>::Type;
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename T>
 | |
| T refIfLvalue(T&&);
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| #define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
 | |
| // Like decltype(exp), but if exp is an lvalue, produces a reference type.
 | |
| //
 | |
| //     int i;
 | |
| //     decltype(i) i1(i);                         // i1 has type int.
 | |
| //     KJ_DECLTYPE_REF(i + 1) i2(i + 1);          // i2 has type int.
 | |
| //     KJ_DECLTYPE_REF(i) i3(i);                  // i3 has type int&.
 | |
| //     KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i));  // i4 has type int.
 | |
| 
 | |
| template <typename T>
 | |
| struct CanConvert_ {
 | |
|   static int sfinae(T);
 | |
|   static bool sfinae(...);
 | |
| };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| constexpr bool canConvert() {
 | |
|   return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
 | |
| }
 | |
| 
 | |
| #if __GNUC__ && !__clang__ && __GNUC__ < 5
 | |
| template <typename T>
 | |
| constexpr bool canMemcpy() {
 | |
|   // Returns true if T can be copied using memcpy instead of using the copy constructor or
 | |
|   // assignment operator.
 | |
| 
 | |
|   // GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be
 | |
|   // any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right
 | |
|   // thing at one point but later on they changed such that a deleted copy constructor was
 | |
|   // considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up
 | |
|   // and assume we can't memcpy() at all, and must explicitly copy-construct everything.
 | |
|   return false;
 | |
| }
 | |
| #define KJ_ASSERT_CAN_MEMCPY(T)
 | |
| #else
 | |
| template <typename T>
 | |
| constexpr bool canMemcpy() {
 | |
|   // Returns true if T can be copied using memcpy instead of using the copy constructor or
 | |
|   // assignment operator.
 | |
| 
 | |
|   return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
 | |
| }
 | |
| #define KJ_ASSERT_CAN_MEMCPY(T) \
 | |
|   static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able");
 | |
| #endif
 | |
| 
 | |
| // =======================================================================================
 | |
| // Equivalents to std::move() and std::forward(), since these are very commonly needed and the
 | |
| // std header <utility> pulls in lots of other stuff.
 | |
| //
 | |
| // We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
 | |
| // that the cost of typing more letters outweighs the cost of being slightly harder to understand
 | |
| // when first encountered.
 | |
| 
 | |
| template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
 | |
| template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
 | |
| 
 | |
| template<typename T> constexpr T cp(T& t) noexcept { return t; }
 | |
| template<typename T> constexpr T cp(const T& t) noexcept { return t; }
 | |
| // Useful to force a copy, particularly to pass into a function that expects T&&.
 | |
| 
 | |
| template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_;
 | |
| template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; };
 | |
| template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; };
 | |
| template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type;
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
 | |
|   return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
 | |
|   return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t s>
 | |
| inline constexpr size_t size(T (&arr)[s]) { return s; }
 | |
| template <typename T>
 | |
| inline constexpr size_t size(T&& arr) { return arr.size(); }
 | |
| // Returns the size of the parameter, whether the parameter is a regular C array or a container
 | |
| // with a `.size()` method.
 | |
| 
 | |
| class MaxValue_ {
 | |
| private:
 | |
|   template <typename T>
 | |
|   inline constexpr T maxSigned() const {
 | |
|     return (1ull << (sizeof(T) * 8 - 1)) - 1;
 | |
|   }
 | |
|   template <typename T>
 | |
|   inline constexpr T maxUnsigned() const {
 | |
|     return ~static_cast<T>(0u);
 | |
|   }
 | |
| 
 | |
| public:
 | |
| #define _kJ_HANDLE_TYPE(T) \
 | |
|   inline constexpr operator   signed T() const { return MaxValue_::maxSigned  <  signed T>(); } \
 | |
|   inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
 | |
|   _kJ_HANDLE_TYPE(char)
 | |
|   _kJ_HANDLE_TYPE(short)
 | |
|   _kJ_HANDLE_TYPE(int)
 | |
|   _kJ_HANDLE_TYPE(long)
 | |
|   _kJ_HANDLE_TYPE(long long)
 | |
| #undef _kJ_HANDLE_TYPE
 | |
| 
 | |
|   inline constexpr operator char() const {
 | |
|     // `char` is different from both `signed char` and `unsigned char`, and may be signed or
 | |
|     // unsigned on different platforms.  Ugh.
 | |
|     return char(-1) < 0 ? MaxValue_::maxSigned<char>()
 | |
|                         : MaxValue_::maxUnsigned<char>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MinValue_ {
 | |
| private:
 | |
|   template <typename T>
 | |
|   inline constexpr T minSigned() const {
 | |
|     return 1ull << (sizeof(T) * 8 - 1);
 | |
|   }
 | |
|   template <typename T>
 | |
|   inline constexpr T minUnsigned() const {
 | |
|     return 0u;
 | |
|   }
 | |
| 
 | |
| public:
 | |
| #define _kJ_HANDLE_TYPE(T) \
 | |
|   inline constexpr operator   signed T() const { return MinValue_::minSigned  <  signed T>(); } \
 | |
|   inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
 | |
|   _kJ_HANDLE_TYPE(char)
 | |
|   _kJ_HANDLE_TYPE(short)
 | |
|   _kJ_HANDLE_TYPE(int)
 | |
|   _kJ_HANDLE_TYPE(long)
 | |
|   _kJ_HANDLE_TYPE(long long)
 | |
| #undef _kJ_HANDLE_TYPE
 | |
| 
 | |
|   inline constexpr operator char() const {
 | |
|     // `char` is different from both `signed char` and `unsigned char`, and may be signed or
 | |
|     // unsigned on different platforms.  Ugh.
 | |
|     return char(-1) < 0 ? MinValue_::minSigned<char>()
 | |
|                         : MinValue_::minUnsigned<char>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_();
 | |
| // A special constant which, when cast to an integer type, takes on the maximum possible value of
 | |
| // that type.  This is useful to use as e.g. a parameter to a function because it will be robust
 | |
| // in the face of changes to the parameter's type.
 | |
| //
 | |
| // `char` is not supported, but `signed char` and `unsigned char` are.
 | |
| 
 | |
| static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_();
 | |
| // A special constant which, when cast to an integer type, takes on the minimum possible value
 | |
| // of that type.  This is useful to use as e.g. a parameter to a function because it will be robust
 | |
| // in the face of changes to the parameter's type.
 | |
| //
 | |
| // `char` is not supported, but `signed char` and `unsigned char` are.
 | |
| 
 | |
| template <typename T>
 | |
| inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); }
 | |
| template <typename T>
 | |
| inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); }
 | |
| 
 | |
| template <uint bits>
 | |
| inline constexpr unsigned long long maxValueForBits() {
 | |
|   // Get the maximum integer representable in the given number of bits.
 | |
| 
 | |
|   // 1ull << 64 is unfortunately undefined.
 | |
|   return (bits == 64 ? 0 : (1ull << bits)) - 1;
 | |
| }
 | |
| 
 | |
| struct ThrowOverflow {
 | |
|   // Functor which throws an exception complaining about integer overflow. Usually this is used
 | |
|   // with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid
 | |
|   // including units.h when not using CAPNP_DEBUG_TYPES.
 | |
|   void operator()() const;
 | |
| };
 | |
| 
 | |
| #if __GNUC__
 | |
| inline constexpr float inf() { return __builtin_huge_valf(); }
 | |
| inline constexpr float nan() { return __builtin_nanf(""); }
 | |
| 
 | |
| #elif _MSC_VER
 | |
| 
 | |
| // Do what MSVC math.h does
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable: 4756)  // "overflow in constant arithmetic"
 | |
| inline constexpr float inf() { return (float)(1e300 * 1e300); }
 | |
| #pragma warning(pop)
 | |
| 
 | |
| float nan();
 | |
| // Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred
 | |
| // canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN()
 | |
| // returns the correct NaN, but we don't want to #include that here. So, we give up and make
 | |
| // this out-of-line on MSVC.
 | |
| //
 | |
| // TODO(msvc): Can we do better?
 | |
| 
 | |
| #else
 | |
| #error "Not sure how to support your compiler."
 | |
| #endif
 | |
| 
 | |
| inline constexpr bool isNaN(float f) { return f != f; }
 | |
| inline constexpr bool isNaN(double f) { return f != f; }
 | |
| 
 | |
| inline int popCount(unsigned int x) {
 | |
| #if defined(_MSC_VER)
 | |
|   return __popcnt(x);
 | |
|   // Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int
 | |
| #else
 | |
|   return __builtin_popcount(x);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // =======================================================================================
 | |
| // Useful fake containers
 | |
| 
 | |
| template <typename T>
 | |
| class Range {
 | |
| public:
 | |
|   inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}
 | |
|   inline explicit constexpr Range(const T& end): begin_(0), end_(end) {}
 | |
| 
 | |
|   class Iterator {
 | |
|   public:
 | |
|     Iterator() = default;
 | |
|     inline Iterator(const T& value): value(value) {}
 | |
| 
 | |
|     inline const T&  operator* () const { return value; }
 | |
|     inline const T&  operator[](size_t index) const { return value + index; }
 | |
|     inline Iterator& operator++() { ++value; return *this; }
 | |
|     inline Iterator  operator++(int) { return Iterator(value++); }
 | |
|     inline Iterator& operator--() { --value; return *this; }
 | |
|     inline Iterator  operator--(int) { return Iterator(value--); }
 | |
|     inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
 | |
|     inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
 | |
|     inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
 | |
|     inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
 | |
|     inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }
 | |
| 
 | |
|     inline bool operator==(const Iterator& other) const { return value == other.value; }
 | |
|     inline bool operator!=(const Iterator& other) const { return value != other.value; }
 | |
|     inline bool operator<=(const Iterator& other) const { return value <= other.value; }
 | |
|     inline bool operator>=(const Iterator& other) const { return value >= other.value; }
 | |
|     inline bool operator< (const Iterator& other) const { return value <  other.value; }
 | |
|     inline bool operator> (const Iterator& other) const { return value >  other.value; }
 | |
| 
 | |
|   private:
 | |
|     T value;
 | |
|   };
 | |
| 
 | |
|   inline Iterator begin() const { return Iterator(begin_); }
 | |
|   inline Iterator end() const { return Iterator(end_); }
 | |
| 
 | |
|   inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }
 | |
| 
 | |
| private:
 | |
|   T begin_;
 | |
|   T end_;
 | |
| };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) {
 | |
|   return Range<WiderType<Decay<T>, Decay<U>>>(begin, end);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
 | |
| // Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
 | |
| // (exclusive).  Example:
 | |
| //
 | |
| //     // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
 | |
| //     for (int i: kj::range(1, 10)) { print(i); }
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); }
 | |
| // Returns a fake iterable container containing all values of T from zero (inclusive) to `end`
 | |
| // (exclusive).  Example:
 | |
| //
 | |
| //     // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 | |
| //     for (int i: kj::zeroTo(10)) { print(i); }
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr Range<size_t> indices(T&& container) {
 | |
|   // Shortcut for iterating over the indices of a container:
 | |
|   //
 | |
|   //     for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }
 | |
| 
 | |
|   return range<size_t>(0, kj::size(container));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| class Repeat {
 | |
| public:
 | |
|   inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}
 | |
| 
 | |
|   class Iterator {
 | |
|   public:
 | |
|     Iterator() = default;
 | |
|     inline Iterator(const T& value, size_t index): value(value), index(index) {}
 | |
| 
 | |
|     inline const T&  operator* () const { return value; }
 | |
|     inline const T&  operator[](ptrdiff_t index) const { return value; }
 | |
|     inline Iterator& operator++() { ++index; return *this; }
 | |
|     inline Iterator  operator++(int) { return Iterator(value, index++); }
 | |
|     inline Iterator& operator--() { --index; return *this; }
 | |
|     inline Iterator  operator--(int) { return Iterator(value, index--); }
 | |
|     inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
 | |
|     inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
 | |
|     inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
 | |
|     inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
 | |
|     inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }
 | |
| 
 | |
|     inline bool operator==(const Iterator& other) const { return index == other.index; }
 | |
|     inline bool operator!=(const Iterator& other) const { return index != other.index; }
 | |
|     inline bool operator<=(const Iterator& other) const { return index <= other.index; }
 | |
|     inline bool operator>=(const Iterator& other) const { return index >= other.index; }
 | |
|     inline bool operator< (const Iterator& other) const { return index <  other.index; }
 | |
|     inline bool operator> (const Iterator& other) const { return index >  other.index; }
 | |
| 
 | |
|   private:
 | |
|     T value;
 | |
|     size_t index;
 | |
|   };
 | |
| 
 | |
|   inline Iterator begin() const { return Iterator(value, 0); }
 | |
|   inline Iterator end() const { return Iterator(value, count); }
 | |
| 
 | |
|   inline size_t size() const { return count; }
 | |
|   inline const T& operator[](ptrdiff_t) const { return value; }
 | |
| 
 | |
| private:
 | |
|   T value;
 | |
|   size_t count;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
 | |
|   // Returns a fake iterable which contains `count` repeats of `value`.  Useful for e.g. creating
 | |
|   // a bunch of spaces:  `kj::repeat(' ', indent * 2)`
 | |
| 
 | |
|   return Repeat<Decay<T>>(value, count);
 | |
| }
 | |
| 
 | |
| // =======================================================================================
 | |
| // Manually invoking constructors and destructors
 | |
| //
 | |
| // ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.
 | |
| 
 | |
| // We want placement new, but we don't want to #include <new>.  operator new cannot be defined in
 | |
| // a namespace, and defining it globally conflicts with the definition in <new>.  So we have to
 | |
| // define a dummy type and an operator new that uses it.
 | |
| 
 | |
| namespace _ {  // private
 | |
| struct PlacementNew {};
 | |
| }  // namespace _ (private)
 | |
| } // namespace kj
 | |
| 
 | |
| inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
 | |
|   return __p;
 | |
| }
 | |
| 
 | |
| inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {}
 | |
| 
 | |
| namespace kj {
 | |
| 
 | |
| template <typename T, typename... Params>
 | |
| inline void ctor(T& location, Params&&... params) {
 | |
|   new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline void dtor(T& location) {
 | |
|   location.~T();
 | |
| }
 | |
| 
 | |
| // =======================================================================================
 | |
| // Maybe
 | |
| //
 | |
| // Use in cases where you want to indicate that a value may be null.  Using Maybe<T&> instead of T*
 | |
| // forces the caller to handle the null case in order to satisfy the compiler, thus reliably
 | |
| // preventing null pointer dereferences at runtime.
 | |
| //
 | |
| // Maybe<T> can be implicitly constructed from T and from nullptr.  Additionally, it can be
 | |
| // implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
 | |
| // To read the value of a Maybe<T>, do:
 | |
| //
 | |
| //    KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
 | |
| //      doSomething(*value);
 | |
| //    } else {
 | |
| //      maybeWasNull();
 | |
| //    }
 | |
| //
 | |
| // KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
 | |
| // block.  The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
 | |
| // though it may or may not actually be a pointer.
 | |
| //
 | |
| // Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
 | |
| // indicating nullness.
 | |
| 
 | |
| template <typename T>
 | |
| class Maybe;
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename T>
 | |
| class NullableValue {
 | |
|   // Class whose interface behaves much like T*, but actually contains an instance of T and a
 | |
|   // boolean flag indicating nullness.
 | |
| 
 | |
| public:
 | |
|   inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
 | |
|       : isSet(other.isSet) {
 | |
|     if (isSet) {
 | |
|       ctor(value, kj::mv(other.value));
 | |
|     }
 | |
|   }
 | |
|   inline NullableValue(const NullableValue& other)
 | |
|       : isSet(other.isSet) {
 | |
|     if (isSet) {
 | |
|       ctor(value, other.value);
 | |
|     }
 | |
|   }
 | |
|   inline NullableValue(NullableValue& other)
 | |
|       : isSet(other.isSet) {
 | |
|     if (isSet) {
 | |
|       ctor(value, other.value);
 | |
|     }
 | |
|   }
 | |
|   inline ~NullableValue()
 | |
| #if _MSC_VER
 | |
|       // TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex
 | |
|       //   than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed.
 | |
|       noexcept(false)
 | |
| #else
 | |
|       noexcept(noexcept(instance<T&>().~T()))
 | |
| #endif
 | |
|   {
 | |
|     if (isSet) {
 | |
|       dtor(value);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline T& operator*() & { return value; }
 | |
|   inline const T& operator*() const & { return value; }
 | |
|   inline T&& operator*() && { return kj::mv(value); }
 | |
|   inline const T&& operator*() const && { return kj::mv(value); }
 | |
|   inline T* operator->() { return &value; }
 | |
|   inline const T* operator->() const { return &value; }
 | |
|   inline operator T*() { return isSet ? &value : nullptr; }
 | |
|   inline operator const T*() const { return isSet ? &value : nullptr; }
 | |
| 
 | |
|   template <typename... Params>
 | |
|   inline T& emplace(Params&&... params) {
 | |
|     if (isSet) {
 | |
|       isSet = false;
 | |
|       dtor(value);
 | |
|     }
 | |
|     ctor(value, kj::fwd<Params>(params)...);
 | |
|     isSet = true;
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
| private:  // internal interface used by friends only
 | |
|   inline NullableValue() noexcept: isSet(false) {}
 | |
|   inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
 | |
|       : isSet(true) {
 | |
|     ctor(value, kj::mv(t));
 | |
|   }
 | |
|   inline NullableValue(T& t)
 | |
|       : isSet(true) {
 | |
|     ctor(value, t);
 | |
|   }
 | |
|   inline NullableValue(const T& t)
 | |
|       : isSet(true) {
 | |
|     ctor(value, t);
 | |
|   }
 | |
|   inline NullableValue(const T* t)
 | |
|       : isSet(t != nullptr) {
 | |
|     if (isSet) ctor(value, *t);
 | |
|   }
 | |
|   template <typename U>
 | |
|   inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
 | |
|       : isSet(other.isSet) {
 | |
|     if (isSet) {
 | |
|       ctor(value, kj::mv(other.value));
 | |
|     }
 | |
|   }
 | |
|   template <typename U>
 | |
|   inline NullableValue(const NullableValue<U>& other)
 | |
|       : isSet(other.isSet) {
 | |
|     if (isSet) {
 | |
|       ctor(value, other.value);
 | |
|     }
 | |
|   }
 | |
|   template <typename U>
 | |
|   inline NullableValue(const NullableValue<U&>& other)
 | |
|       : isSet(other.isSet) {
 | |
|     if (isSet) {
 | |
|       ctor(value, *other.ptr);
 | |
|     }
 | |
|   }
 | |
|   inline NullableValue(decltype(nullptr)): isSet(false) {}
 | |
| 
 | |
|   inline NullableValue& operator=(NullableValue&& other) {
 | |
|     if (&other != this) {
 | |
|       // Careful about throwing destructors/constructors here.
 | |
|       if (isSet) {
 | |
|         isSet = false;
 | |
|         dtor(value);
 | |
|       }
 | |
|       if (other.isSet) {
 | |
|         ctor(value, kj::mv(other.value));
 | |
|         isSet = true;
 | |
|       }
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline NullableValue& operator=(NullableValue& other) {
 | |
|     if (&other != this) {
 | |
|       // Careful about throwing destructors/constructors here.
 | |
|       if (isSet) {
 | |
|         isSet = false;
 | |
|         dtor(value);
 | |
|       }
 | |
|       if (other.isSet) {
 | |
|         ctor(value, other.value);
 | |
|         isSet = true;
 | |
|       }
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline NullableValue& operator=(const NullableValue& other) {
 | |
|     if (&other != this) {
 | |
|       // Careful about throwing destructors/constructors here.
 | |
|       if (isSet) {
 | |
|         isSet = false;
 | |
|         dtor(value);
 | |
|       }
 | |
|       if (other.isSet) {
 | |
|         ctor(value, other.value);
 | |
|         isSet = true;
 | |
|       }
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool operator==(decltype(nullptr)) const { return !isSet; }
 | |
|   inline bool operator!=(decltype(nullptr)) const { return isSet; }
 | |
| 
 | |
| private:
 | |
|   bool isSet;
 | |
| 
 | |
| #if _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable: 4624)
 | |
| // Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning
 | |
| // seems broken.
 | |
| #endif
 | |
| 
 | |
|   union {
 | |
|     T value;
 | |
|   };
 | |
| 
 | |
| #if _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
|   friend class kj::Maybe<T>;
 | |
|   template <typename U>
 | |
|   friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
 | |
| template <typename T>
 | |
| inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
 | |
| template <typename T>
 | |
| inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
 | |
| template <typename T>
 | |
| inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
 | |
| template <typename T>
 | |
| inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }
 | |
| 
 | |
| template <typename T>
 | |
| inline T* readMaybe(T* ptr) { return ptr; }
 | |
| // Allow KJ_IF_MAYBE to work on regular pointers.
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| #define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
 | |
| 
 | |
| template <typename T>
 | |
| class Maybe {
 | |
|   // A T, or nullptr.
 | |
| 
 | |
|   // IF YOU CHANGE THIS CLASS:  Note that there is a specialization of it in memory.h.
 | |
| 
 | |
| public:
 | |
|   Maybe(): ptr(nullptr) {}
 | |
|   Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
 | |
|   Maybe(T& t): ptr(t) {}
 | |
|   Maybe(const T& t): ptr(t) {}
 | |
|   Maybe(const T* t) noexcept: ptr(t) {}
 | |
|   Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
 | |
|   Maybe(const Maybe& other): ptr(other.ptr) {}
 | |
|   Maybe(Maybe& other): ptr(other.ptr) {}
 | |
| 
 | |
|   template <typename U>
 | |
|   Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
 | |
|     KJ_IF_MAYBE(val, kj::mv(other)) {
 | |
|       ptr.emplace(kj::mv(*val));
 | |
|     }
 | |
|   }
 | |
|   template <typename U>
 | |
|   Maybe(const Maybe<U>& other) {
 | |
|     KJ_IF_MAYBE(val, other) {
 | |
|       ptr.emplace(*val);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
 | |
| 
 | |
|   template <typename... Params>
 | |
|   inline T& emplace(Params&&... params) {
 | |
|     // Replace this Maybe's content with a new value constructed by passing the given parametrs to
 | |
|     // T's constructor. This can be used to initialize a Maybe without copying or even moving a T.
 | |
|     // Returns a reference to the newly-constructed value.
 | |
| 
 | |
|     return ptr.emplace(kj::fwd<Params>(params)...);
 | |
|   }
 | |
| 
 | |
|   inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
 | |
|   inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
 | |
|   inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }
 | |
| 
 | |
|   inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
 | |
|   inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
 | |
| 
 | |
|   T& orDefault(T& defaultValue) {
 | |
|     if (ptr == nullptr) {
 | |
|       return defaultValue;
 | |
|     } else {
 | |
|       return *ptr;
 | |
|     }
 | |
|   }
 | |
|   const T& orDefault(const T& defaultValue) const {
 | |
|     if (ptr == nullptr) {
 | |
|       return defaultValue;
 | |
|     } else {
 | |
|       return *ptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename Func>
 | |
|   auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> {
 | |
|     if (ptr == nullptr) {
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       return f(*ptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename Func>
 | |
|   auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> {
 | |
|     if (ptr == nullptr) {
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       return f(*ptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename Func>
 | |
|   auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> {
 | |
|     if (ptr == nullptr) {
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       return f(kj::mv(*ptr));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename Func>
 | |
|   auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> {
 | |
|     if (ptr == nullptr) {
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       return f(kj::mv(*ptr));
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   _::NullableValue<T> ptr;
 | |
| 
 | |
|   template <typename U>
 | |
|   friend class Maybe;
 | |
|   template <typename U>
 | |
|   friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
 | |
|   template <typename U>
 | |
|   friend U* _::readMaybe(Maybe<U>& maybe);
 | |
|   template <typename U>
 | |
|   friend const U* _::readMaybe(const Maybe<U>& maybe);
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
 | |
| public:
 | |
|   Maybe() noexcept: ptr(nullptr) {}
 | |
|   Maybe(T& t) noexcept: ptr(&t) {}
 | |
|   Maybe(T* t) noexcept: ptr(t) {}
 | |
| 
 | |
|   template <typename U>
 | |
|   inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
 | |
|   template <typename U>
 | |
|   inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
 | |
|   inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
 | |
| 
 | |
|   inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
 | |
|   inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
 | |
|   template <typename U>
 | |
|   inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
 | |
|   template <typename U>
 | |
|   inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }
 | |
| 
 | |
|   inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
 | |
|   inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
 | |
| 
 | |
|   T& orDefault(T& defaultValue) {
 | |
|     if (ptr == nullptr) {
 | |
|       return defaultValue;
 | |
|     } else {
 | |
|       return *ptr;
 | |
|     }
 | |
|   }
 | |
|   const T& orDefault(const T& defaultValue) const {
 | |
|     if (ptr == nullptr) {
 | |
|       return defaultValue;
 | |
|     } else {
 | |
|       return *ptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename Func>
 | |
|   auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
 | |
|     if (ptr == nullptr) {
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       return f(*ptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   T* ptr;
 | |
| 
 | |
|   template <typename U>
 | |
|   friend class Maybe;
 | |
|   template <typename U>
 | |
|   friend U* _::readMaybe(Maybe<U&>&& maybe);
 | |
|   template <typename U>
 | |
|   friend U* _::readMaybe(const Maybe<U&>& maybe);
 | |
| };
 | |
| 
 | |
| // =======================================================================================
 | |
| // ArrayPtr
 | |
| //
 | |
| // So common that we put it in common.h rather than array.h.
 | |
| 
 | |
| template <typename T>
 | |
| class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
 | |
|   // A pointer to an array.  Includes a size.  Like any pointer, it doesn't own the target data,
 | |
|   // and passing by value only copies the pointer, not the target.
 | |
| 
 | |
| public:
 | |
|   inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
 | |
|   inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
 | |
|   inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
 | |
|   inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
 | |
|   inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init)
 | |
|       : ptr(init.begin()), size_(init.size()) {}
 | |
| 
 | |
|   template <size_t size>
 | |
|   inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
 | |
|   // Construct an ArrayPtr from a native C-style array.
 | |
| 
 | |
|   inline operator ArrayPtr<const T>() const {
 | |
|     return ArrayPtr<const T>(ptr, size_);
 | |
|   }
 | |
|   inline ArrayPtr<const T> asConst() const {
 | |
|     return ArrayPtr<const T>(ptr, size_);
 | |
|   }
 | |
| 
 | |
|   inline size_t size() const { return size_; }
 | |
|   inline const T& operator[](size_t index) const {
 | |
|     KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
 | |
|     return ptr[index];
 | |
|   }
 | |
|   inline T& operator[](size_t index) {
 | |
|     KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
 | |
|     return ptr[index];
 | |
|   }
 | |
| 
 | |
|   inline T* begin() { return ptr; }
 | |
|   inline T* end() { return ptr + size_; }
 | |
|   inline T& front() { return *ptr; }
 | |
|   inline T& back() { return *(ptr + size_ - 1); }
 | |
|   inline const T* begin() const { return ptr; }
 | |
|   inline const T* end() const { return ptr + size_; }
 | |
|   inline const T& front() const { return *ptr; }
 | |
|   inline const T& back() const { return *(ptr + size_ - 1); }
 | |
| 
 | |
|   inline ArrayPtr<const T> slice(size_t start, size_t end) const {
 | |
|     KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
 | |
|     return ArrayPtr<const T>(ptr + start, end - start);
 | |
|   }
 | |
|   inline ArrayPtr slice(size_t start, size_t end) {
 | |
|     KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
 | |
|     return ArrayPtr(ptr + start, end - start);
 | |
|   }
 | |
| 
 | |
|   inline ArrayPtr<PropagateConst<T, byte>> asBytes() const {
 | |
|     // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing
 | |
|     // rules.
 | |
|     return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) };
 | |
|   }
 | |
|   inline ArrayPtr<PropagateConst<T, char>> asChars() const {
 | |
|     // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing
 | |
|     // rules.
 | |
|     return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) };
 | |
|   }
 | |
| 
 | |
|   inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
 | |
|   inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
 | |
| 
 | |
|   inline bool operator==(const ArrayPtr& other) const {
 | |
|     if (size_ != other.size_) return false;
 | |
|     for (size_t i = 0; i < size_; i++) {
 | |
|       if (ptr[i] != other[i]) return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }
 | |
| 
 | |
| private:
 | |
|   T* ptr;
 | |
|   size_t size_;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
 | |
|   // Use this function to construct ArrayPtrs without writing out the type name.
 | |
|   return ArrayPtr<T>(ptr, size);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
 | |
|   // Use this function to construct ArrayPtrs without writing out the type name.
 | |
|   return ArrayPtr<T>(begin, end);
 | |
| }
 | |
| 
 | |
| // =======================================================================================
 | |
| // Casts
 | |
| 
 | |
| template <typename To, typename From>
 | |
| To implicitCast(From&& from) {
 | |
|   // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit.  Useful
 | |
|   // for e.g. resolving ambiguous overloads without sacrificing type-safety.
 | |
|   return kj::fwd<From>(from);
 | |
| }
 | |
| 
 | |
| template <typename To, typename From>
 | |
| Maybe<To&> dynamicDowncastIfAvailable(From& from) {
 | |
|   // If RTTI is disabled, always returns nullptr.  Otherwise, works like dynamic_cast.  Useful
 | |
|   // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
 | |
|   // for correctness.  It is highly recommended that you try to arrange all your dynamic_casts
 | |
|   // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
 | |
|   // design.
 | |
| 
 | |
|   // Force a compile error if To is not a subtype of From.  Cross-casting is rare; if it is needed
 | |
|   // we should have a separate cast function like dynamicCrosscastIfAvailable().
 | |
|   if (false) {
 | |
|     kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
 | |
|   }
 | |
| 
 | |
| #if KJ_NO_RTTI
 | |
|   return nullptr;
 | |
| #else
 | |
|   return dynamic_cast<To*>(&from);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename To, typename From>
 | |
| To& downcast(From& from) {
 | |
|   // Down-cast a value to a sub-type, asserting that the cast is valid.  In opt mode this is a
 | |
|   // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
 | |
|   // that the value really has the requested type.
 | |
| 
 | |
|   // Force a compile error if To is not a subtype of From.
 | |
|   if (false) {
 | |
|     kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
 | |
|   }
 | |
| 
 | |
| #if !KJ_NO_RTTI
 | |
|   KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
 | |
| #endif
 | |
| 
 | |
|   return static_cast<To&>(from);
 | |
| }
 | |
| 
 | |
| // =======================================================================================
 | |
| // Defer
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename Func>
 | |
| class Deferred {
 | |
| public:
 | |
|   inline Deferred(Func&& func): func(kj::fwd<Func>(func)), canceled(false) {}
 | |
|   inline ~Deferred() noexcept(false) { if (!canceled) func(); }
 | |
|   KJ_DISALLOW_COPY(Deferred);
 | |
| 
 | |
|   // This move constructor is usually optimized away by the compiler.
 | |
|   inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
 | |
|     other.canceled = true;
 | |
|   }
 | |
| private:
 | |
|   Func func;
 | |
|   bool canceled;
 | |
| };
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| template <typename Func>
 | |
| _::Deferred<Func> defer(Func&& func) {
 | |
|   // Returns an object which will invoke the given functor in its destructor.  The object is not
 | |
|   // copyable but is movable with the semantics you'd expect.  Since the return type is private,
 | |
|   // you need to assign to an `auto` variable.
 | |
|   //
 | |
|   // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
 | |
|   // want some code to run at current scope exit.
 | |
| 
 | |
|   return _::Deferred<Func>(kj::fwd<Func>(func));
 | |
| }
 | |
| 
 | |
| #define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
 | |
| // Run the given code when the function exits, whether by return or exception.
 | |
| 
 | |
| }  // namespace kj
 | |
| 
 | |
| #endif  // KJ_COMMON_H_
 | |
| 
 |