You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							105 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							105 lines
						
					
					
						
							3.6 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import numpy as np
 | |
| 
 | |
| from cereal import messaging
 | |
| from common.filter_simple import FirstOrderFilter
 | |
| from common.realtime import Ratekeeper
 | |
| from system.swaglog import cloudlog
 | |
| 
 | |
| RATE = 10
 | |
| FFT_SAMPLES = 4096
 | |
| REFERENCE_SPL = 2e-5  # newtons/m^2
 | |
| SAMPLE_RATE = 44100
 | |
| FILTER_DT = 1. / (SAMPLE_RATE / FFT_SAMPLES)
 | |
| 
 | |
| 
 | |
| def calculate_spl(measurements):
 | |
|   # https://www.engineeringtoolbox.com/sound-pressure-d_711.html
 | |
|   sound_pressure = np.sqrt(np.mean(measurements ** 2))  # RMS of amplitudes
 | |
|   if sound_pressure > 0:
 | |
|     sound_pressure_level = 20 * np.log10(sound_pressure / REFERENCE_SPL)  # dB
 | |
|   else:
 | |
|     sound_pressure_level = 0
 | |
|   return sound_pressure, sound_pressure_level
 | |
| 
 | |
| 
 | |
| def apply_a_weighting(measurements: np.ndarray) -> np.ndarray:
 | |
|   # Generate a Hanning window of the same length as the audio measurements
 | |
|   measurements_windowed = measurements * np.hanning(len(measurements))
 | |
| 
 | |
|   # Calculate the frequency axis for the signal
 | |
|   freqs = np.fft.fftfreq(measurements_windowed.size, d=1 / SAMPLE_RATE)
 | |
| 
 | |
|   # Calculate the A-weighting filter
 | |
|   # https://en.wikipedia.org/wiki/A-weighting
 | |
|   A = 12194 ** 2 * freqs ** 4 / ((freqs ** 2 + 20.6 ** 2) * (freqs ** 2 + 12194 ** 2) * np.sqrt((freqs ** 2 + 107.7 ** 2) * (freqs ** 2 + 737.9 ** 2)))
 | |
|   A /= np.max(A)  # Normalize the filter
 | |
| 
 | |
|   # Apply the A-weighting filter to the signal
 | |
|   return np.abs(np.fft.ifft(np.fft.fft(measurements_windowed) * A))
 | |
| 
 | |
| 
 | |
| class Mic:
 | |
|   def __init__(self, pm):
 | |
|     self.pm = pm
 | |
|     self.rk = Ratekeeper(RATE)
 | |
| 
 | |
|     self.measurements = np.empty(0)
 | |
| 
 | |
|     self.sound_pressure = 0
 | |
|     self.sound_pressure_weighted = 0
 | |
|     self.sound_pressure_level_weighted = 0
 | |
| 
 | |
|     self.spl_filter_weighted = FirstOrderFilter(0, 2.5, FILTER_DT, initialized=False)
 | |
| 
 | |
|   def update(self):
 | |
|     msg = messaging.new_message('microphone')
 | |
|     msg.microphone.soundPressure = float(self.sound_pressure)
 | |
|     msg.microphone.soundPressureWeighted = float(self.sound_pressure_weighted)
 | |
| 
 | |
|     msg.microphone.soundPressureWeightedDb = float(self.sound_pressure_level_weighted)
 | |
|     msg.microphone.filteredSoundPressureWeightedDb = float(self.spl_filter_weighted.x)
 | |
| 
 | |
|     self.pm.send('microphone', msg)
 | |
|     self.rk.keep_time()
 | |
| 
 | |
|   def callback(self, indata, frames, time, status):
 | |
|     """
 | |
|     Using amplitude measurements, calculate an uncalibrated sound pressure and sound pressure level.
 | |
|     Then apply A-weighting to the raw amplitudes and run the same calculations again.
 | |
| 
 | |
|     Logged A-weighted equivalents are rough approximations of the human-perceived loudness.
 | |
|     """
 | |
| 
 | |
|     self.measurements = np.concatenate((self.measurements, indata[:, 0]))
 | |
| 
 | |
|     while self.measurements.size >= FFT_SAMPLES:
 | |
|       measurements = self.measurements[:FFT_SAMPLES]
 | |
| 
 | |
|       self.sound_pressure, _ = calculate_spl(measurements)
 | |
|       measurements_weighted = apply_a_weighting(measurements)
 | |
|       self.sound_pressure_weighted, self.sound_pressure_level_weighted = calculate_spl(measurements_weighted)
 | |
|       self.spl_filter_weighted.update(self.sound_pressure_level_weighted)
 | |
| 
 | |
|       self.measurements = self.measurements[FFT_SAMPLES:]
 | |
| 
 | |
|   def micd_thread(self):
 | |
|     # sounddevice must be imported after forking processes
 | |
|     import sounddevice as sd  # pylint: disable=import-outside-toplevel
 | |
| 
 | |
|     with sd.InputStream(channels=1, samplerate=SAMPLE_RATE, callback=self.callback) as stream:
 | |
|       cloudlog.info(f"micd stream started: {stream.samplerate=} {stream.channels=} {stream.dtype=} {stream.device=}")
 | |
|       while True:
 | |
|         self.update()
 | |
| 
 | |
| 
 | |
| def main(pm=None):
 | |
|   if pm is None:
 | |
|     pm = messaging.PubMaster(['microphone'])
 | |
| 
 | |
|   mic = Mic(pm)
 | |
|   mic.micd_thread()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   main()
 | |
| 
 |