You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							241 lines
						
					
					
						
							8.0 KiB
						
					
					
				
			
		
		
	
	
							241 lines
						
					
					
						
							8.0 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import importlib
 | 
						|
import math
 | 
						|
from collections import defaultdict, deque
 | 
						|
 | 
						|
import cereal.messaging as messaging
 | 
						|
from cereal import car
 | 
						|
from common.numpy_fast import interp
 | 
						|
from common.params import Params
 | 
						|
from common.realtime import Ratekeeper, set_realtime_priority
 | 
						|
from selfdrive.config import RADAR_TO_CAMERA
 | 
						|
from selfdrive.controls.lib.cluster.fastcluster_py import cluster_points_centroid
 | 
						|
from selfdrive.controls.lib.radar_helpers import Cluster, Track
 | 
						|
from selfdrive.swaglog import cloudlog
 | 
						|
 | 
						|
 | 
						|
class KalmanParams():
 | 
						|
  def __init__(self, dt):
 | 
						|
    # Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
 | 
						|
    # hardcoding a lookup table to compute K for values of radar_ts between 0.1s and 1.0s
 | 
						|
    assert dt > .01 and dt < .1, "Radar time step must be between .01s and 0.1s"
 | 
						|
    self.A = [[1.0, dt], [0.0, 1.0]]
 | 
						|
    self.C = [1.0, 0.0]
 | 
						|
    #Q = np.matrix([[10., 0.0], [0.0, 100.]])
 | 
						|
    #R = 1e3
 | 
						|
    #K = np.matrix([[ 0.05705578], [ 0.03073241]])
 | 
						|
    dts = [dt * 0.01 for dt in range(1, 11)]
 | 
						|
    K0 = [0.12288, 0.14557, 0.16523, 0.18282, 0.19887, 0.21372, 0.22761, 0.24069, 0.2531, 0.26491]
 | 
						|
    K1 = [0.29666, 0.29331, 0.29043, 0.28787, 0.28555, 0.28342, 0.28144, 0.27958, 0.27783, 0.27617]
 | 
						|
    self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
 | 
						|
 | 
						|
 | 
						|
def laplacian_cdf(x, mu, b):
 | 
						|
  b = max(b, 1e-4)
 | 
						|
  return math.exp(-abs(x-mu)/b)
 | 
						|
 | 
						|
 | 
						|
def match_vision_to_cluster(v_ego, lead, clusters):
 | 
						|
  # match vision point to best statistical cluster match
 | 
						|
  offset_vision_dist = lead.dist - RADAR_TO_CAMERA
 | 
						|
 | 
						|
  def prob(c):
 | 
						|
    prob_d = laplacian_cdf(c.dRel, offset_vision_dist, lead.std)
 | 
						|
    prob_y = laplacian_cdf(c.yRel, lead.relY, lead.relYStd)
 | 
						|
    prob_v = laplacian_cdf(c.vRel, lead.relVel, lead.relVelStd)
 | 
						|
 | 
						|
    # This is isn't exactly right, but good heuristic
 | 
						|
    return prob_d * prob_y * prob_v
 | 
						|
 | 
						|
  cluster = max(clusters, key=prob)
 | 
						|
 | 
						|
  # if no 'sane' match is found return -1
 | 
						|
  # stationary radar points can be false positives
 | 
						|
  dist_sane = abs(cluster.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
 | 
						|
  vel_sane = (abs(cluster.vRel - lead.relVel) < 10) or (v_ego + cluster.vRel > 3)
 | 
						|
  if dist_sane and vel_sane:
 | 
						|
    return cluster
 | 
						|
  else:
 | 
						|
    return None
 | 
						|
 | 
						|
 | 
						|
def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
 | 
						|
  # Determine leads, this is where the essential logic happens
 | 
						|
  if len(clusters) > 0 and ready and lead_msg.prob > .5:
 | 
						|
    cluster = match_vision_to_cluster(v_ego, lead_msg, clusters)
 | 
						|
  else:
 | 
						|
    cluster = None
 | 
						|
 | 
						|
  lead_dict = {'status': False}
 | 
						|
  if cluster is not None:
 | 
						|
    lead_dict = cluster.get_RadarState(lead_msg.prob)
 | 
						|
  elif (cluster is None) and ready and (lead_msg.prob > .5):
 | 
						|
    lead_dict = Cluster().get_RadarState_from_vision(lead_msg, v_ego)
 | 
						|
 | 
						|
  if low_speed_override:
 | 
						|
    low_speed_clusters = [c for c in clusters if c.potential_low_speed_lead(v_ego)]
 | 
						|
    if len(low_speed_clusters) > 0:
 | 
						|
      closest_cluster = min(low_speed_clusters, key=lambda c: c.dRel)
 | 
						|
 | 
						|
      # Only choose new cluster if it is actually closer than the previous one
 | 
						|
      if (not lead_dict['status']) or (closest_cluster.dRel < lead_dict['dRel']):
 | 
						|
        lead_dict = closest_cluster.get_RadarState()
 | 
						|
 | 
						|
  return lead_dict
 | 
						|
 | 
						|
 | 
						|
class RadarD():
 | 
						|
  def __init__(self, radar_ts, delay=0):
 | 
						|
    self.current_time = 0
 | 
						|
 | 
						|
    self.tracks = defaultdict(dict)
 | 
						|
    self.kalman_params = KalmanParams(radar_ts)
 | 
						|
 | 
						|
    self.active = 0
 | 
						|
 | 
						|
    # v_ego
 | 
						|
    self.v_ego = 0.
 | 
						|
    self.v_ego_hist = deque([0], maxlen=delay+1)
 | 
						|
 | 
						|
    self.ready = False
 | 
						|
 | 
						|
  def update(self, frame, sm, rr, has_radar):
 | 
						|
    self.current_time = 1e-9*max([sm.logMonoTime[key] for key in sm.logMonoTime.keys()])
 | 
						|
 | 
						|
    if sm.updated['controlsState']:
 | 
						|
      self.active = sm['controlsState'].active
 | 
						|
      self.v_ego = sm['controlsState'].vEgo
 | 
						|
      self.v_ego_hist.append(self.v_ego)
 | 
						|
    if sm.updated['model']:
 | 
						|
      self.ready = True
 | 
						|
 | 
						|
    ar_pts = {}
 | 
						|
    for pt in rr.points:
 | 
						|
      ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
 | 
						|
 | 
						|
    # *** remove missing points from meta data ***
 | 
						|
    for ids in list(self.tracks.keys()):
 | 
						|
      if ids not in ar_pts:
 | 
						|
        self.tracks.pop(ids, None)
 | 
						|
 | 
						|
    # *** compute the tracks ***
 | 
						|
    for ids in ar_pts:
 | 
						|
      rpt = ar_pts[ids]
 | 
						|
 | 
						|
      # align v_ego by a fixed time to align it with the radar measurement
 | 
						|
      v_lead = rpt[2] + self.v_ego_hist[0]
 | 
						|
 | 
						|
      # create the track if it doesn't exist or it's a new track
 | 
						|
      if ids not in self.tracks:
 | 
						|
        self.tracks[ids] = Track(v_lead, self.kalman_params)
 | 
						|
      self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
 | 
						|
 | 
						|
    idens = list(sorted(self.tracks.keys()))
 | 
						|
    track_pts = list([self.tracks[iden].get_key_for_cluster() for iden in idens])
 | 
						|
 | 
						|
 | 
						|
    # If we have multiple points, cluster them
 | 
						|
    if len(track_pts) > 1:
 | 
						|
      cluster_idxs = cluster_points_centroid(track_pts, 2.5)
 | 
						|
      clusters = [None] * (max(cluster_idxs) + 1)
 | 
						|
 | 
						|
      for idx in range(len(track_pts)):
 | 
						|
        cluster_i = cluster_idxs[idx]
 | 
						|
        if clusters[cluster_i] is None:
 | 
						|
          clusters[cluster_i] = Cluster()
 | 
						|
        clusters[cluster_i].add(self.tracks[idens[idx]])
 | 
						|
    elif len(track_pts) == 1:
 | 
						|
      # FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
 | 
						|
      cluster_idxs = [0]
 | 
						|
      clusters = [Cluster()]
 | 
						|
      clusters[0].add(self.tracks[idens[0]])
 | 
						|
    else:
 | 
						|
      clusters = []
 | 
						|
 | 
						|
    # if a new point, reset accel to the rest of the cluster
 | 
						|
    for idx in range(len(track_pts)):
 | 
						|
      if self.tracks[idens[idx]].cnt <= 1:
 | 
						|
        aLeadK = clusters[cluster_idxs[idx]].aLeadK
 | 
						|
        aLeadTau = clusters[cluster_idxs[idx]].aLeadTau
 | 
						|
        self.tracks[idens[idx]].reset_a_lead(aLeadK, aLeadTau)
 | 
						|
 | 
						|
    # *** publish radarState ***
 | 
						|
    dat = messaging.new_message('radarState')
 | 
						|
    dat.valid = sm.all_alive_and_valid(service_list=['controlsState', 'model'])
 | 
						|
    dat.radarState.mdMonoTime = sm.logMonoTime['model']
 | 
						|
    dat.radarState.canMonoTimes = list(rr.canMonoTimes)
 | 
						|
    dat.radarState.radarErrors = list(rr.errors)
 | 
						|
    dat.radarState.controlsStateMonoTime = sm.logMonoTime['controlsState']
 | 
						|
 | 
						|
    if has_radar:
 | 
						|
      dat.radarState.leadOne = get_lead(self.v_ego, self.ready, clusters, sm['model'].lead, low_speed_override=True)
 | 
						|
      dat.radarState.leadTwo = get_lead(self.v_ego, self.ready, clusters, sm['model'].leadFuture, low_speed_override=False)
 | 
						|
    return dat
 | 
						|
 | 
						|
 | 
						|
# fuses camera and radar data for best lead detection
 | 
						|
def radard_thread(sm=None, pm=None, can_sock=None):
 | 
						|
  set_realtime_priority(2)
 | 
						|
 | 
						|
  # wait for stats about the car to come in from controls
 | 
						|
  cloudlog.info("radard is waiting for CarParams")
 | 
						|
  CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
 | 
						|
  cloudlog.info("radard got CarParams")
 | 
						|
 | 
						|
  # import the radar from the fingerprint
 | 
						|
  cloudlog.info("radard is importing %s", CP.carName)
 | 
						|
  RadarInterface = importlib.import_module('selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface
 | 
						|
 | 
						|
  if can_sock is None:
 | 
						|
    can_sock = messaging.sub_sock('can')
 | 
						|
 | 
						|
  if sm is None:
 | 
						|
    sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])
 | 
						|
 | 
						|
  # *** publish radarState and liveTracks
 | 
						|
  if pm is None:
 | 
						|
    pm = messaging.PubMaster(['radarState', 'liveTracks'])
 | 
						|
 | 
						|
  RI = RadarInterface(CP)
 | 
						|
 | 
						|
  rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
 | 
						|
  RD = RadarD(CP.radarTimeStep, RI.delay)
 | 
						|
 | 
						|
  has_radar = not CP.radarOffCan
 | 
						|
 | 
						|
  while 1:
 | 
						|
    can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
 | 
						|
    rr = RI.update(can_strings)
 | 
						|
 | 
						|
    if rr is None:
 | 
						|
      continue
 | 
						|
 | 
						|
    sm.update(0)
 | 
						|
 | 
						|
    dat = RD.update(rk.frame, sm, rr, has_radar)
 | 
						|
    dat.radarState.cumLagMs = -rk.remaining*1000.
 | 
						|
 | 
						|
    pm.send('radarState', dat)
 | 
						|
 | 
						|
    # *** publish tracks for UI debugging (keep last) ***
 | 
						|
    tracks = RD.tracks
 | 
						|
    dat = messaging.new_message('liveTracks', len(tracks))
 | 
						|
 | 
						|
    for cnt, ids in enumerate(sorted(tracks.keys())):
 | 
						|
      dat.liveTracks[cnt] = {
 | 
						|
        "trackId": ids,
 | 
						|
        "dRel": float(tracks[ids].dRel),
 | 
						|
        "yRel": float(tracks[ids].yRel),
 | 
						|
        "vRel": float(tracks[ids].vRel),
 | 
						|
      }
 | 
						|
    pm.send('liveTracks', dat)
 | 
						|
 | 
						|
    rk.monitor_time()
 | 
						|
 | 
						|
 | 
						|
def main(sm=None, pm=None, can_sock=None):
 | 
						|
  radard_thread(sm, pm, can_sock)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  main()
 | 
						|
 |