You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							166 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
	
	
							166 lines
						
					
					
						
							6.0 KiB
						
					
					
				import numpy as np
 | 
						|
 | 
						|
from common.transformations.camera import (FULL_FRAME_SIZE,
 | 
						|
                                           FOCAL,
 | 
						|
                                           get_view_frame_from_road_frame,
 | 
						|
                                           get_view_frame_from_calib_frame,
 | 
						|
                                           vp_from_ke)
 | 
						|
 | 
						|
# segnet
 | 
						|
SEGNET_SIZE = (512, 384)
 | 
						|
 | 
						|
def get_segnet_frame_from_camera_frame(segnet_size=SEGNET_SIZE, full_frame_size=FULL_FRAME_SIZE):
 | 
						|
  return np.array([[float(segnet_size[0]) / full_frame_size[0],  0.0],
 | 
						|
                   [0.0,  float(segnet_size[1]) / full_frame_size[1]]])
 | 
						|
segnet_frame_from_camera_frame = get_segnet_frame_from_camera_frame() # xx
 | 
						|
 | 
						|
# model
 | 
						|
MODEL_INPUT_SIZE = (320, 160)
 | 
						|
MODEL_YUV_SIZE = (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
MODEL_CX = MODEL_INPUT_SIZE[0] / 2.
 | 
						|
MODEL_CY = 21.
 | 
						|
 | 
						|
model_fl = 728.0
 | 
						|
model_height = 1.22
 | 
						|
 | 
						|
# canonical model transform
 | 
						|
model_intrinsics = np.array([
 | 
						|
  [model_fl,  0.0,  MODEL_CX],
 | 
						|
  [0.0,  model_fl,  MODEL_CY],
 | 
						|
  [0.0,  0.0,            1.0]])
 | 
						|
 | 
						|
 | 
						|
# MED model
 | 
						|
MEDMODEL_INPUT_SIZE = (512, 256)
 | 
						|
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
MEDMODEL_CY = 47.6
 | 
						|
 | 
						|
medmodel_fl = 910.0
 | 
						|
medmodel_intrinsics = np.array([
 | 
						|
  [medmodel_fl,  0.0,  0.5 * MEDMODEL_INPUT_SIZE[0]],
 | 
						|
  [0.0,  medmodel_fl,                   MEDMODEL_CY],
 | 
						|
  [0.0,  0.0,                                   1.0]])
 | 
						|
 | 
						|
 | 
						|
# BIG model
 | 
						|
BIGMODEL_INPUT_SIZE = (1024, 512)
 | 
						|
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
 | 
						|
bigmodel_fl = 910.0
 | 
						|
bigmodel_intrinsics = np.array([
 | 
						|
  [bigmodel_fl,  0.0,  0.5 * BIGMODEL_INPUT_SIZE[0]],
 | 
						|
  [0.0,  bigmodel_fl,             256 + MEDMODEL_CY],
 | 
						|
  [0.0,  0.0,                                   1.0]])
 | 
						|
 | 
						|
 | 
						|
# SBIG model (big model with the size of small model)
 | 
						|
SBIGMODEL_INPUT_SIZE = (512, 256)
 | 
						|
SBIGMODEL_YUV_SIZE = (SBIGMODEL_INPUT_SIZE[0], SBIGMODEL_INPUT_SIZE[1] * 3 // 2)
 | 
						|
 | 
						|
sbigmodel_fl = 455.0
 | 
						|
sbigmodel_intrinsics = np.array([
 | 
						|
  [sbigmodel_fl,  0.0,  0.5 * SBIGMODEL_INPUT_SIZE[0]],
 | 
						|
  [0.0,  sbigmodel_fl,      0.5 * (256 + MEDMODEL_CY)],
 | 
						|
  [0.0,  0.0,                                     1.0]])
 | 
						|
 | 
						|
model_frame_from_road_frame = np.dot(model_intrinsics,
 | 
						|
  get_view_frame_from_road_frame(0, 0, 0, model_height))
 | 
						|
 | 
						|
bigmodel_frame_from_road_frame = np.dot(bigmodel_intrinsics,
 | 
						|
  get_view_frame_from_road_frame(0, 0, 0, model_height))
 | 
						|
 | 
						|
bigmodel_frame_from_calib_frame = np.dot(bigmodel_intrinsics,
 | 
						|
  get_view_frame_from_calib_frame(0, 0, 0, 0))
 | 
						|
 | 
						|
sbigmodel_frame_from_road_frame = np.dot(sbigmodel_intrinsics,
 | 
						|
  get_view_frame_from_road_frame(0, 0, 0, model_height))
 | 
						|
 | 
						|
sbigmodel_frame_from_calib_frame = np.dot(sbigmodel_intrinsics,
 | 
						|
  get_view_frame_from_calib_frame(0, 0, 0, 0))
 | 
						|
 | 
						|
medmodel_frame_from_road_frame = np.dot(medmodel_intrinsics,
 | 
						|
  get_view_frame_from_road_frame(0, 0, 0, model_height))
 | 
						|
 | 
						|
medmodel_frame_from_calib_frame = np.dot(medmodel_intrinsics,
 | 
						|
  get_view_frame_from_calib_frame(0, 0, 0, 0))
 | 
						|
 | 
						|
model_frame_from_bigmodel_frame = np.dot(model_intrinsics, np.linalg.inv(bigmodel_intrinsics))
 | 
						|
medmodel_frame_from_bigmodel_frame = np.dot(medmodel_intrinsics, np.linalg.inv(bigmodel_intrinsics))
 | 
						|
 | 
						|
 | 
						|
# 'camera from model camera'
 | 
						|
def get_model_height_transform(camera_frame_from_road_frame, height):
 | 
						|
  camera_frame_from_road_ground = np.dot(camera_frame_from_road_frame, np.array([
 | 
						|
    [1, 0, 0],
 | 
						|
    [0, 1, 0],
 | 
						|
    [0, 0, 0],
 | 
						|
    [0, 0, 1],
 | 
						|
  ]))
 | 
						|
 | 
						|
  camera_frame_from_road_high = np.dot(camera_frame_from_road_frame, np.array([
 | 
						|
    [1, 0, 0],
 | 
						|
    [0, 1, 0],
 | 
						|
    [0, 0, height - model_height],
 | 
						|
    [0, 0, 1],
 | 
						|
  ]))
 | 
						|
 | 
						|
  road_high_from_camera_frame = np.linalg.inv(camera_frame_from_road_high)
 | 
						|
  high_camera_from_low_camera = np.dot(camera_frame_from_road_ground, road_high_from_camera_frame)
 | 
						|
 | 
						|
  return high_camera_from_low_camera
 | 
						|
 | 
						|
 | 
						|
# camera_frame_from_model_frame aka 'warp matrix'
 | 
						|
# was: calibration.h/CalibrationTransform
 | 
						|
def get_camera_frame_from_model_frame(camera_frame_from_road_frame, height=model_height, camera_fl=FOCAL):
 | 
						|
  vp = vp_from_ke(camera_frame_from_road_frame)
 | 
						|
 | 
						|
  model_zoom = camera_fl / model_fl
 | 
						|
  model_camera_from_model_frame = np.array([
 | 
						|
    [model_zoom,  0.0,  vp[0] - MODEL_CX * model_zoom],
 | 
						|
    [0.0,  model_zoom,  vp[1] - MODEL_CY * model_zoom],
 | 
						|
    [0.0,  0.0,                                   1.0],
 | 
						|
  ])
 | 
						|
 | 
						|
  # This function is super slow, so skip it if height is very close to canonical
 | 
						|
  # TODO: speed it up!
 | 
						|
  if abs(height - model_height) > 0.001:
 | 
						|
    camera_from_model_camera = get_model_height_transform(camera_frame_from_road_frame, height)
 | 
						|
  else:
 | 
						|
    camera_from_model_camera = np.eye(3)
 | 
						|
 | 
						|
  return np.dot(camera_from_model_camera, model_camera_from_model_frame)
 | 
						|
 | 
						|
 | 
						|
def get_camera_frame_from_medmodel_frame(camera_frame_from_road_frame):
 | 
						|
  camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
 | 
						|
  medmodel_frame_from_ground = medmodel_frame_from_road_frame[:, (0, 1, 3)]
 | 
						|
 | 
						|
  ground_from_medmodel_frame = np.linalg.inv(medmodel_frame_from_ground)
 | 
						|
  camera_frame_from_medmodel_frame = np.dot(camera_frame_from_ground, ground_from_medmodel_frame)
 | 
						|
 | 
						|
  return camera_frame_from_medmodel_frame
 | 
						|
 | 
						|
 | 
						|
def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
 | 
						|
  camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
 | 
						|
  bigmodel_frame_from_ground = bigmodel_frame_from_road_frame[:, (0, 1, 3)]
 | 
						|
 | 
						|
  ground_from_bigmodel_frame = np.linalg.inv(bigmodel_frame_from_ground)
 | 
						|
  camera_frame_from_bigmodel_frame = np.dot(camera_frame_from_ground, ground_from_bigmodel_frame)
 | 
						|
 | 
						|
  return camera_frame_from_bigmodel_frame
 | 
						|
 | 
						|
 | 
						|
def get_model_frame(snu_full, camera_frame_from_model_frame, size):
 | 
						|
  idxs = camera_frame_from_model_frame.dot(np.column_stack([np.tile(np.arange(size[0]), size[1]),
 | 
						|
                                                            np.tile(np.arange(size[1]), (size[0], 1)).T.flatten(),
 | 
						|
                                                            np.ones(size[0] * size[1])]).T).T.astype(int)
 | 
						|
  calib_flat = snu_full[idxs[:, 1], idxs[:, 0]]
 | 
						|
  if len(snu_full.shape) == 3:
 | 
						|
    calib = calib_flat.reshape((size[1], size[0], 3))
 | 
						|
  elif len(snu_full.shape) == 2:
 | 
						|
    calib = calib_flat.reshape((size[1], size[0]))
 | 
						|
  else:
 | 
						|
    raise ValueError("shape of input img is weird")
 | 
						|
  return calib
 | 
						|
 |