open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

209 lines
7.0 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/nlp_derivative_approximation/bfgs_update.hpp
* \author Boris Houska, Hans Joachim Ferreau
*
*/
#ifndef ACADO_TOOLKIT_BFGS_UPDATE_HPP
#define ACADO_TOOLKIT_BFGS_UPDATE_HPP
#include <acado/utils/acado_utils.hpp>
#include <acado/nlp_derivative_approximation/constant_hessian.hpp>
BEGIN_NAMESPACE_ACADO
/** Definition of the BFGS modifications
*/
enum BFGSModificationType{
MOD_POWELLS_MODIFICATION, /**< Use "Powell's trick". */
MOD_NOCEDALS_MODIFICATION, /**< Skip update in "critical" situations */
MOD_NO_MODIFICATION /**< Allow possibly indefinite updates */
};
/**
* \brief Implements BFGS updates for approximating second-order derivatives within NLPsolvers.
*
* \ingroup NumericalAlgorithms
*
* The class BFGSupdate implements BFGS updates for approximating second-order
* derivative information within iterative NLPsolvers.
*
* \author Boris Houska, Hans Joachim Ferreau
*/
class BFGSupdate : public ConstantHessian
{
//
// PUBLIC MEMBER FUNCTIONS:
//
public:
/** Default constructor. */
BFGSupdate( );
/** Constructor that takes the number of blocks for matrix block updates. */
BFGSupdate( UserInteraction* _userInteraction,
uint _nBlocks = 0
);
/** Copy constructor (deep copy). */
BFGSupdate( const BFGSupdate& rhs );
/** Destructor. */
virtual ~BFGSupdate( );
/** Assignment operator (deep copy). */
BFGSupdate& operator=( const BFGSupdate& rhs );
virtual NLPderivativeApproximation* clone( ) const;
virtual returnValue initHessian( BlockMatrix& B, /**< matrix to be initialised */
uint N, /**< number of intervals */
const OCPiterate& iter /**< current iterate */
);
/** Applies an initial scaling of the form: \n
* \n
* B = B*sqrt( (y^T*y)/(x^T*x) ) \n
* \n
* This rescaling can be used if the initial Hessian was a \n
* unit matrix which should be auto-scaled in the first step \n
* Note that the update will be skipped for the case that \n
* x^T*x or y^T*y is less than 1000.0*EPS (safeguard \n
* against unreasonable scaling). \n
* \n
* \return sqrt( (y^T*y)/(x^T*x) ) \n
*/
virtual returnValue initScaling( BlockMatrix& B, /**< matrix to be updated */
const BlockMatrix& x, /**< direction x */
const BlockMatrix& y /**< residuum */
);
/** Applies a BFGS update.
* \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue apply( BlockMatrix &B, /**< matrix to be updated */
const BlockMatrix &x, /**< direction x */
const BlockMatrix &y /**< residuum */ );
inline returnValue setBFGSModification( const BFGSModificationType &modification_
);
inline BooleanType performsBlockUpdates( ) const;
//
// PROTECTED MEMBER FUNCTIONS:
//
protected:
/** Applies a BFGS update in its "standard" form: \n
* \n
* B = B - B*x*x^T*B/(x^T*B*x) + y*y^T/(x^T*y) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue applyUpdate( BlockMatrix &B, /**< matrix to be updated */
const BlockMatrix &x, /**< direction x */
const BlockMatrix &y /**< residuum */
);
/** Applies a block BFGS update to the diagonal of the matrix B. The integer N \n
* specifies the number of blocks. \n
* \n
* B_ii = B_ii - B_ii*x_i*x_i^T*B_ii/(x_i^T*B_ii*x_i) + y_i*y_i^T/(x_i^T*y_i) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue applyBlockDiagonalUpdate( BlockMatrix &B, /**< matrix to be updated */
const BlockMatrix &x, /**< direction x */
const BlockMatrix &y /**< residuum */
);
returnValue getSubBlockLine( const int &N ,
const int &line1 ,
const int &line2 ,
const int &offset,
const BlockMatrix &M ,
BlockMatrix &x );
returnValue setSubBlockLine( const int &N ,
const int &line1 ,
const int &line2 ,
const int &offset,
BlockMatrix &M ,
const BlockMatrix &x );
//
// PROTECTED DATA MEMBERS:
//
protected:
BFGSModificationType modification;
uint nBlocks;
};
CLOSE_NAMESPACE_ACADO
#include <acado/nlp_derivative_approximation/bfgs_update.ipp>
#endif // ACADO_TOOLKIT_BFGS_UPDATE_HPP
/*
* end of file
*/