You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							77 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							77 lines
						
					
					
						
							2.5 KiB
						
					
					
				//
 | 
						|
// C++ standalone verion of fastcluster by Daniel Muellner
 | 
						|
//
 | 
						|
// Copyright: Daniel Muellner, 2011
 | 
						|
//            Christoph Dalitz, 2018
 | 
						|
// License:   BSD style license
 | 
						|
//            (see the file LICENSE for details)
 | 
						|
//
 | 
						|
 | 
						|
#ifndef fastclustercpp_H
 | 
						|
#define fastclustercpp_H
 | 
						|
 | 
						|
//
 | 
						|
// Assigns cluster labels (0, ..., nclust-1) to the n points such
 | 
						|
// that the cluster result is split into nclust clusters.
 | 
						|
//
 | 
						|
// Input arguments:
 | 
						|
//   n      = number of observables
 | 
						|
//   merge  = clustering result in R format
 | 
						|
//   nclust = number of clusters
 | 
						|
// Output arguments:
 | 
						|
//   labels = allocated integer array of size n for result
 | 
						|
//
 | 
						|
void cutree_k(int n, const int* merge, int nclust, int* labels);
 | 
						|
 | 
						|
//
 | 
						|
// Assigns cluster labels (0, ..., nclust-1) to the n points such
 | 
						|
// that the hierarchical clsutering is stopped at cluster distance cdist
 | 
						|
//
 | 
						|
// Input arguments:
 | 
						|
//   n      = number of observables
 | 
						|
//   merge  = clustering result in R format
 | 
						|
//   height = cluster distance at each merge step
 | 
						|
//   cdist  = cutoff cluster distance
 | 
						|
// Output arguments:
 | 
						|
//   labels = allocated integer array of size n for result
 | 
						|
//
 | 
						|
void cutree_cdist(int n, const int* merge, double* height, double cdist, int* labels);
 | 
						|
 | 
						|
//
 | 
						|
// Hierarchical clustering with one of Daniel Muellner's fast algorithms
 | 
						|
//
 | 
						|
// Input arguments:
 | 
						|
//   n       = number of observables
 | 
						|
//   distmat = condensed distance matrix, i.e. an n*(n-1)/2 array representing
 | 
						|
//             the upper triangle (without diagonal elements) of the distance
 | 
						|
//             matrix, e.g. for n=4:
 | 
						|
//               d00 d01 d02 d03
 | 
						|
//               d10 d11 d12 d13   ->  d01 d02 d03 d12 d13 d23
 | 
						|
//               d20 d21 d22 d23
 | 
						|
//               d30 d31 d32 d33
 | 
						|
//   method  = cluster metric (see enum method_code)
 | 
						|
// Output arguments:
 | 
						|
//   merge   = allocated (n-1)x2 matrix (2*(n-1) array) for storing result.
 | 
						|
//             Result follows R hclust convention:
 | 
						|
//              - observabe indices start with one
 | 
						|
//              - merge[i][] contains the merged nodes in step i
 | 
						|
//              - merge[i][j] is negative when the node is an atom
 | 
						|
//   height  = allocated (n-1) array with distances at each merge step
 | 
						|
// Return code:
 | 
						|
//   0 = ok
 | 
						|
//   1 = invalid method
 | 
						|
//
 | 
						|
int hclust_fast(int n, double* distmat, int method, int* merge, double* height);
 | 
						|
enum hclust_fast_methods {
 | 
						|
  HCLUST_METHOD_SINGLE = 0,
 | 
						|
  HCLUST_METHOD_COMPLETE = 1,
 | 
						|
  HCLUST_METHOD_AVERAGE = 2,
 | 
						|
  HCLUST_METHOD_MEDIAN = 3,
 | 
						|
  HCLUST_METHOD_CENTROID = 5,
 | 
						|
};
 | 
						|
 | 
						|
void hclust_pdist(int n, int m, double* pts, double* out);
 | 
						|
void cluster_points_centroid(int n, int m, double* pts, double dist, int* idx);
 | 
						|
 | 
						|
 | 
						|
#endif
 | 
						|
 |