open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

105 lines
3.8 KiB

from selfdrive.can.parser import CANParser
from selfdrive.config import Conversions as CV
from selfdrive.car.ford.values import DBC
from common.kalman.simple_kalman import KF1D
import numpy as np
WHEEL_RADIUS = 0.33
def parse_gear_shifter(can_gear, car_fingerprint):
# TODO: Use values from DBC to parse this field
if can_gear == 0x0:
return "park"
elif can_gear == 0x1:
return "reverse"
elif can_gear == 0x2:
return "neutral"
elif can_gear == 0x3:
return "drive"
elif can_gear == 0x4:
return "brake"
return "unknown"
def get_can_parser(CP):
signals = [
# sig_name, sig_address, default
("WhlRr_W_Meas", "WheelSpeed_CG1", 0.),
("WhlRl_W_Meas", "WheelSpeed_CG1", 0.),
("WhlFr_W_Meas", "WheelSpeed_CG1", 0.),
("WhlFl_W_Meas", "WheelSpeed_CG1", 0.),
("SteWhlRelInit_An_Sns", "Steering_Wheel_Data_CG1", 0.),
("Cruise_State", "Cruise_Status", 0.),
("Set_Speed", "Cruise_Status", 0.),
("LaActAvail_D_Actl", "Lane_Keep_Assist_Status", 0),
("LaHandsOff_B_Actl", "Lane_Keep_Assist_Status", 0),
("LaActDeny_B_Actl", "Lane_Keep_Assist_Status", 0),
("ApedPosScal_Pc_Actl", "EngineData_14", 0.),
("Dist_Incr", "Steering_Buttons", 0.),
("Brake_Drv_Appl", "Cruise_Status", 0.),
("Brake_Lights", "BCM_to_HS_Body", 0.),
]
checks = [
]
return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, 0)
class CarState(object):
def __init__(self, CP):
self.CP = CP
self.left_blinker_on = 0
self.right_blinker_on = 0
# initialize can parser
self.car_fingerprint = CP.carFingerprint
# vEgo kalman filter
dt = 0.01
# Q = np.matrix([[10.0, 0.0], [0.0, 100.0]])
# R = 1e3
self.v_ego_kf = KF1D(x0=np.matrix([[0.0], [0.0]]),
A=np.matrix([[1.0, dt], [0.0, 1.0]]),
C=np.matrix([1.0, 0.0]),
K=np.matrix([[0.12287673], [0.29666309]]))
self.v_ego = 0.0
def update(self, cp):
# copy can_valid
self.can_valid = cp.can_valid
# update prevs, update must run once per loop
self.prev_left_blinker_on = self.left_blinker_on
self.prev_right_blinker_on = self.right_blinker_on
# calc best v_ego estimate, by averaging two opposite corners
self.v_wheel_fl = cp.vl["WheelSpeed_CG1"]['WhlRr_W_Meas'] * WHEEL_RADIUS
self.v_wheel_fr = cp.vl["WheelSpeed_CG1"]['WhlRl_W_Meas'] * WHEEL_RADIUS
self.v_wheel_rl = cp.vl["WheelSpeed_CG1"]['WhlFr_W_Meas'] * WHEEL_RADIUS
self.v_wheel_rr = cp.vl["WheelSpeed_CG1"]['WhlFl_W_Meas'] * WHEEL_RADIUS
self.v_wheel = (self.v_wheel_fl + self.v_wheel_fr + self.v_wheel_rl + self.v_wheel_rr) / 4.
# Kalman filter
if abs(self.v_wheel - self.v_ego) > 2.0: # Prevent large accelerations when car starts at non zero speed
self.v_ego_x = np.matrix([[self.v_wheel], [0.0]])
self.v_ego_raw = self.v_wheel
v_ego_x = self.v_ego_kf.update(self.v_wheel)
self.v_ego = float(v_ego_x[0])
self.a_ego = float(v_ego_x[1])
self.standstill = not self.v_wheel > 0.001
self.angle_steers = cp.vl["Steering_Wheel_Data_CG1"]['SteWhlRelInit_An_Sns']
self.v_cruise_pcm = cp.vl["Cruise_Status"]['Set_Speed'] * CV.MPH_TO_MS
self.pcm_acc_status = cp.vl["Cruise_Status"]['Cruise_State']
self.main_on = cp.vl["Cruise_Status"]['Cruise_State'] != 0
self.lkas_state = cp.vl["Lane_Keep_Assist_Status"]['LaActAvail_D_Actl']
self.steer_override = not cp.vl["Lane_Keep_Assist_Status"]['LaHandsOff_B_Actl']
self.steer_error = cp.vl["Lane_Keep_Assist_Status"]['LaActDeny_B_Actl']
self.user_gas = cp.vl["EngineData_14"]['ApedPosScal_Pc_Actl']
self.brake_pressed = bool(cp.vl["Cruise_Status"]["Brake_Drv_Appl"])
self.brake_lights = bool(cp.vl["BCM_to_HS_Body"]["Brake_Lights"])
self.generic_toggle = bool(cp.vl["Steering_Buttons"]["Dist_Incr"])