open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

214 lines
10 KiB

#!/usr/bin/env python3
import os
from cereal import car
from math import fabs, exp
from panda import Panda
from openpilot.common.basedir import BASEDIR
from openpilot.selfdrive.car import create_button_events, get_safety_config, get_friction
from openpilot.selfdrive.car.conversions import Conversions as CV
from openpilot.selfdrive.car.gm.radar_interface import RADAR_HEADER_MSG
from openpilot.selfdrive.car.gm.values import CAR, CruiseButtons, CarControllerParams, EV_CAR, CAMERA_ACC_CAR, CanBus
from openpilot.selfdrive.car.interfaces import CarInterfaceBase, TorqueFromLateralAccelCallbackType, FRICTION_THRESHOLD, LatControlInputs, NanoFFModel
ButtonType = car.CarState.ButtonEvent.Type
TransmissionType = car.CarParams.TransmissionType
NetworkLocation = car.CarParams.NetworkLocation
BUTTONS_DICT = {CruiseButtons.RES_ACCEL: ButtonType.accelCruise, CruiseButtons.DECEL_SET: ButtonType.decelCruise,
CruiseButtons.MAIN: ButtonType.altButton3, CruiseButtons.CANCEL: ButtonType.cancel}
NON_LINEAR_TORQUE_PARAMS = {
CAR.CHEVROLET_BOLT_EUV: [2.6531724862969748, 1.0, 0.1919764879840985, 0.009054123646805178],
CAR.GMC_ACADIA: [4.78003305, 1.0, 0.3122, 0.05591772],
CAR.CHEVROLET_SILVERADO: [3.29974374, 1.0, 0.25571356, 0.0465122]
}
NEURAL_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/neural_ff_weights.json')
class CarInterface(CarInterfaceBase):
@staticmethod
def get_pid_accel_limits(CP, current_speed, cruise_speed):
return CarControllerParams.ACCEL_MIN, CarControllerParams.ACCEL_MAX
# Determined by iteratively plotting and minimizing error for f(angle, speed) = steer.
@staticmethod
def get_steer_feedforward_volt(desired_angle, v_ego):
desired_angle *= 0.02904609
sigmoid = desired_angle / (1 + fabs(desired_angle))
return 0.10006696 * sigmoid * (v_ego + 3.12485927)
def get_steer_feedforward_function(self):
if self.CP.carFingerprint == CAR.CHEVROLET_VOLT:
return self.get_steer_feedforward_volt
else:
return CarInterfaceBase.get_steer_feedforward_default
def torque_from_lateral_accel_siglin(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float,
lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
def sig(val):
# https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick
if val >= 0:
return 1 / (1 + exp(-val)) - 0.5
else:
z = exp(val)
return z / (1 + z) - 0.5
# The "lat_accel vs torque" relationship is assumed to be the sum of "sigmoid + linear" curves
# An important thing to consider is that the slope at 0 should be > 0 (ideally >1)
# This has big effect on the stability about 0 (noise when going straight)
# ToDo: To generalize to other GMs, explore tanh function as the nonlinear
non_linear_torque_params = NON_LINEAR_TORQUE_PARAMS.get(self.CP.carFingerprint)
assert non_linear_torque_params, "The params are not defined"
a, b, c, _ = non_linear_torque_params
steer_torque = (sig(latcontrol_inputs.lateral_acceleration * a) * b) + (latcontrol_inputs.lateral_acceleration * c)
return float(steer_torque) + friction
def torque_from_lateral_accel_neural(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float,
lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
inputs = list(latcontrol_inputs)
if gravity_adjusted:
inputs[0] += inputs[1]
return float(self.neural_ff_model.predict(inputs)) + friction
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
if self.CP.carFingerprint == CAR.CHEVROLET_BOLT_EUV:
self.neural_ff_model = NanoFFModel(NEURAL_PARAMS_PATH, self.CP.carFingerprint)
return self.torque_from_lateral_accel_neural
elif self.CP.carFingerprint in NON_LINEAR_TORQUE_PARAMS:
return self.torque_from_lateral_accel_siglin
else:
return self.torque_from_lateral_accel_linear
@staticmethod
def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs):
ret.carName = "gm"
ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.gm)]
ret.autoResumeSng = False
ret.enableBsm = 0x142 in fingerprint[CanBus.POWERTRAIN]
if candidate in EV_CAR:
ret.transmissionType = TransmissionType.direct
else:
ret.transmissionType = TransmissionType.automatic
ret.longitudinalTuning.kiBP = [5., 35.]
if candidate in CAMERA_ACC_CAR:
ret.experimentalLongitudinalAvailable = True
ret.networkLocation = NetworkLocation.fwdCamera
ret.radarUnavailable = True # no radar
ret.pcmCruise = True
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM
ret.minEnableSpeed = 5 * CV.KPH_TO_MS
ret.minSteerSpeed = 10 * CV.KPH_TO_MS
# Tuning for experimental long
ret.longitudinalTuning.kiV = [2.0, 1.5]
ret.stoppingDecelRate = 2.0 # reach brake quickly after enabling
ret.vEgoStopping = 0.25
ret.vEgoStarting = 0.25
if experimental_long:
ret.pcmCruise = False
ret.openpilotLongitudinalControl = True
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM_LONG
else: # ASCM, OBD-II harness
ret.openpilotLongitudinalControl = True
ret.networkLocation = NetworkLocation.gateway
ret.radarUnavailable = RADAR_HEADER_MSG not in fingerprint[CanBus.OBSTACLE] and not docs
ret.pcmCruise = False # stock non-adaptive cruise control is kept off
# supports stop and go, but initial engage must (conservatively) be above 18mph
ret.minEnableSpeed = 18 * CV.MPH_TO_MS
ret.minSteerSpeed = 7 * CV.MPH_TO_MS
# Tuning
ret.longitudinalTuning.kiV = [2.4, 1.5]
# These cars have been put into dashcam only due to both a lack of users and test coverage.
# These cars likely still work fine. Once a user confirms each car works and a test route is
# added to selfdrive/car/tests/routes.py, we can remove it from this list.
ret.dashcamOnly = candidate in {CAR.CADILLAC_ATS, CAR.HOLDEN_ASTRA, CAR.CHEVROLET_MALIBU, CAR.BUICK_REGAL} or \
(ret.networkLocation == NetworkLocation.gateway and ret.radarUnavailable)
# Start with a baseline tuning for all GM vehicles. Override tuning as needed in each model section below.
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.00]]
ret.lateralTuning.pid.kf = 0.00004 # full torque for 20 deg at 80mph means 0.00007818594
ret.steerActuatorDelay = 0.1 # Default delay, not measured yet
ret.steerLimitTimer = 0.4
ret.radarTimeStep = 0.0667 # GM radar runs at 15Hz instead of standard 20Hz
ret.longitudinalActuatorDelay = 0.5 # large delay to initially start braking
if candidate == CAR.CHEVROLET_VOLT:
ret.lateralTuning.pid.kpBP = [0., 40.]
ret.lateralTuning.pid.kpV = [0., 0.17]
ret.lateralTuning.pid.kiBP = [0.]
ret.lateralTuning.pid.kiV = [0.]
ret.lateralTuning.pid.kf = 1. # get_steer_feedforward_volt()
ret.steerActuatorDelay = 0.2
elif candidate == CAR.GMC_ACADIA:
ret.minEnableSpeed = -1. # engage speed is decided by pcm
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.BUICK_LACROSSE:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CADILLAC_ESCALADE:
ret.minEnableSpeed = -1. # engage speed is decided by pcm
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.CADILLAC_ESCALADE_ESV, CAR.CADILLAC_ESCALADE_ESV_2019):
ret.minEnableSpeed = -1. # engage speed is decided by pcm
if candidate == CAR.CADILLAC_ESCALADE_ESV:
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[10., 41.0], [10., 41.0]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.13, 0.24], [0.01, 0.02]]
ret.lateralTuning.pid.kf = 0.000045
else:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_BOLT_EUV:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_SILVERADO:
# On the Bolt, the ECM and camera independently check that you are either above 5 kph or at a stop
# with foot on brake to allow engagement, but this platform only has that check in the camera.
# TODO: check if this is split by EV/ICE with more platforms in the future
if ret.openpilotLongitudinalControl:
ret.minEnableSpeed = -1.
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_EQUINOX:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_TRAILBLAZER:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
return ret
# returns a car.CarState
def _update(self):
ret = self.CS.update(self.cp, self.cp_cam, self.cp_loopback)
# Don't add event if transitioning from INIT, unless it's to an actual button
if self.CS.cruise_buttons != CruiseButtons.UNPRESS or self.CS.prev_cruise_buttons != CruiseButtons.INIT:
ret.buttonEvents = [
*create_button_events(self.CS.cruise_buttons, self.CS.prev_cruise_buttons, BUTTONS_DICT,
unpressed_btn=CruiseButtons.UNPRESS),
*create_button_events(self.CS.distance_button, self.CS.prev_distance_button,
{1: ButtonType.gapAdjustCruise})
]
return ret