open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

128 lines
4.9 KiB

# Process replay
Process replay is a regression test designed to identify any changes in the output of a process. This test replays a segment through individual processes and compares the output to a known good replay. Each make is represented in the test with a segment.
If the test fails, make sure that you didn't unintentionally change anything. If there are intentional changes, the reference logs will be updated.
Use `test_processes.py` to run the test locally.
Use `FILEREADER_CACHE='1' test_processes.py` to cache log files.
Currently the following processes are tested:
* controlsd
* radard
* plannerd
* calibrationd
* dmonitoringd
* locationd
* paramsd
* ubloxd
* laikad
* torqued
### Usage
```
Usage: test_processes.py [-h] [--whitelist-procs PROCS] [--whitelist-cars CARS] [--blacklist-procs PROCS]
[--blacklist-cars CARS] [--ignore-fields FIELDS] [--ignore-msgs MSGS] [--update-refs] [--upload-only]
Regression test to identify changes in a process's output
optional arguments:
-h, --help show this help message and exit
--whitelist-procs PROCS Whitelist given processes from the test (e.g. controlsd)
--whitelist-cars WHITELIST_CARS Whitelist given cars from the test (e.g. HONDA)
--blacklist-procs BLACKLIST_PROCS Blacklist given processes from the test (e.g. controlsd)
--blacklist-cars BLACKLIST_CARS Blacklist given cars from the test (e.g. HONDA)
--ignore-fields IGNORE_FIELDS Extra fields or msgs to ignore (e.g. carState.events)
--ignore-msgs IGNORE_MSGS Msgs to ignore (e.g. carEvents)
--update-refs Updates reference logs using current commit
--upload-only Skips testing processes and uploads logs from previous test run
```
## Forks
openpilot forks can use this test with their own reference logs, by default `test_proccess.py` saves logs locally.
To generate new logs:
`./test_processes.py`
Then, check in the new logs using git-lfs. Make sure to also update the `ref_commit` file to the current commit.
## API
Process replay test suite exposes programmatic APIs for simultaneously running processes or groups of processes on provided logs.
```py
def replay_process_with_name(name: Union[str, Iterable[str]], lr: Union[LogReader, List[capnp._DynamicStructReader]], *args, **kwargs) -> List[capnp._DynamicStructReader]:
def replay_process(
cfg: Union[ProcessConfig, Iterable[ProcessConfig]], lr: Union[LogReader, List[capnp._DynamicStructReader]], frs: Optional[Dict[str, Any]] = None,
fingerprint: Optional[str] = None, return_all_logs: bool = False, custom_params: Optional[Dict[str, Any]] = None, disable_progress: bool = False
) -> List[capnp._DynamicStructReader]:
```
Example usage:
```py
from openpilot.selfdrive.test.process_replay import replay_process_with_name
from openpilot.tools.lib.logreader import LogReader
lr = LogReader(...)
# provide a name of the process to replay
output_logs = replay_process_with_name('locationd', lr)
# or list of names
output_logs = replay_process_with_name(['ubloxd', 'locationd', 'laikad'], lr)
```
Supported processes:
* controlsd
* radard
* plannerd
* calibrationd
* dmonitoringd
* locationd
* paramsd
* ubloxd
* laikad
* torqued
* modeld
* dmonitoringmodeld
Certain processes may require an initial state, which is usually supplied within `Params` and persisting from segment to segment (e.g CalibrationParams, LiveParameters). The `custom_params` is dictionary used to prepopulate `Params` with arbitrary values. The `get_custom_params_from_lr` helper is provided to fetch meaningful values from log files.
```py
from openpilot.selfdrive.test.process_replay import get_custom_params_from_lr
previous_segment_lr = LogReader(...)
current_segment_lr = LogReader(...)
custom_params = get_custom_params_from_lr(previous_segment_lr, 'last')
output_logs = replay_process_with_name('calibrationd', lr, custom_params=custom_params)
```
Replaying processes that use VisionIPC (e.g. modeld, dmonitoringmodeld) require additional `frs` dictionary with camera states as keys and `FrameReader` objects as values.
```py
from openpilot.tools.lib.framereader import FrameReader
frs = {
'roadCameraState': FrameReader(...),
'wideRoadCameraState': FrameReader(...),
'driverCameraState': FrameReader(...),
}
output_logs = replay_process_with_name(['modeld', 'dmonitoringmodeld'], lr, frs=frs)
```
To capture stdout/stderr of the replayed process, `captured_output_store` can be provided.
```py
output_store = dict()
# pass dictionary by reference, it will be filled with standard outputs - even if process replay fails
output_logs = replay_process_with_name(['radard', 'plannerd'], lr, captured_output_store=output_store)
# entries with captured output in format { 'out': '...', 'err': '...' } will be added to provided dictionary for each replayed process
print(output_store['radard']['out']) # radard stdout
print(output_store['radard']['err']) # radard stderr
```