You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							227 lines
						
					
					
						
							8.8 KiB
						
					
					
				
			
		
		
	
	
							227 lines
						
					
					
						
							8.8 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import unittest
 | 
						|
import numpy as np
 | 
						|
from collections import defaultdict
 | 
						|
from enum import Enum
 | 
						|
 | 
						|
 | 
						|
from openpilot.selfdrive.test.openpilotci import get_url
 | 
						|
from openpilot.tools.lib.logreader import LogReader
 | 
						|
from openpilot.selfdrive.test.process_replay.process_replay import replay_process_with_name
 | 
						|
 | 
						|
TEST_ROUTE, TEST_SEG_NUM = "ff2bd20623fcaeaa|2023-09-05--10-14-54", 4
 | 
						|
GPS_MESSAGES = ['gpsLocationExternal', 'gpsLocation']
 | 
						|
SELECT_COMPARE_FIELDS = {
 | 
						|
  'yaw_rate': ['angularVelocityCalibrated', 'value', 2],
 | 
						|
  'roll': ['orientationNED', 'value', 0],
 | 
						|
  'gps_flag': ['gpsOK'],
 | 
						|
  'inputs_flag': ['inputsOK'],
 | 
						|
  'sensors_flag': ['sensorsOK'],
 | 
						|
}
 | 
						|
JUNK_IDX = 100
 | 
						|
 | 
						|
 | 
						|
class Scenario(Enum):
 | 
						|
  BASE = 'base'
 | 
						|
  GPS_OFF = 'gps_off'
 | 
						|
  GPS_OFF_MIDWAY = 'gps_off_midway'
 | 
						|
  GPS_ON_MIDWAY = 'gps_on_midway'
 | 
						|
  GPS_TUNNEL = 'gps_tunnel'
 | 
						|
  GYRO_OFF = 'gyro_off'
 | 
						|
  GYRO_SPIKE_MIDWAY = 'gyro_spike_midway'
 | 
						|
  ACCEL_OFF = 'accel_off'
 | 
						|
  ACCEL_SPIKE_MIDWAY = 'accel_spike_midway'
 | 
						|
 | 
						|
 | 
						|
def get_select_fields_data(logs):
 | 
						|
  def get_nested_keys(msg, keys):
 | 
						|
    val = None
 | 
						|
    for key in keys:
 | 
						|
      val = getattr(msg if val is None else val, key) if isinstance(key, str) else val[key]
 | 
						|
    return val
 | 
						|
  llk = [x.liveLocationKalman for x in logs if x.which() == 'liveLocationKalman']
 | 
						|
  data = defaultdict(list)
 | 
						|
  for msg in llk:
 | 
						|
    for key, fields in SELECT_COMPARE_FIELDS.items():
 | 
						|
      data[key].append(get_nested_keys(msg, fields))
 | 
						|
  for key in data:
 | 
						|
    data[key] = np.array(data[key][JUNK_IDX:], dtype=float)
 | 
						|
  return data
 | 
						|
 | 
						|
 | 
						|
def run_scenarios(scenario, logs):
 | 
						|
  if scenario == Scenario.BASE:
 | 
						|
    pass
 | 
						|
 | 
						|
  elif scenario == Scenario.GPS_OFF:
 | 
						|
    logs = sorted([x for x in logs if x.which() not in GPS_MESSAGES], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.GPS_OFF_MIDWAY:
 | 
						|
    non_gps = [x for x in logs if x.which() not in GPS_MESSAGES]
 | 
						|
    gps = [x for x in logs if x.which() in GPS_MESSAGES]
 | 
						|
    logs = sorted(non_gps + gps[: len(gps) // 2], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.GPS_ON_MIDWAY:
 | 
						|
    non_gps = [x for x in logs if x.which() not in GPS_MESSAGES]
 | 
						|
    gps = [x for x in logs if x.which() in GPS_MESSAGES]
 | 
						|
    logs = sorted(non_gps + gps[len(gps) // 2:], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.GPS_TUNNEL:
 | 
						|
    non_gps = [x for x in logs if x.which() not in GPS_MESSAGES]
 | 
						|
    gps = [x for x in logs if x.which() in GPS_MESSAGES]
 | 
						|
    logs = sorted(non_gps + gps[:len(gps) // 4] + gps[-len(gps) // 4:], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.GYRO_OFF:
 | 
						|
    logs = sorted([x for x in logs if x.which() != 'gyroscope'], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.GYRO_SPIKE_MIDWAY:
 | 
						|
    non_gyro = [x for x in logs if x.which() not in 'gyroscope']
 | 
						|
    gyro = [x for x in logs if x.which() in 'gyroscope']
 | 
						|
    temp = gyro[len(gyro) // 2].as_builder()
 | 
						|
    temp.gyroscope.gyroUncalibrated.v[0] += 3.0
 | 
						|
    gyro[len(gyro) // 2] = temp.as_reader()
 | 
						|
    logs = sorted(non_gyro + gyro, key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.ACCEL_OFF:
 | 
						|
    logs = sorted([x for x in logs if x.which() != 'accelerometer'], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.ACCEL_SPIKE_MIDWAY:
 | 
						|
    non_accel = [x for x in logs if x.which() not in 'accelerometer']
 | 
						|
    accel = [x for x in logs if x.which() in 'accelerometer']
 | 
						|
    temp = accel[len(accel) // 2].as_builder()
 | 
						|
    temp.accelerometer.acceleration.v[0] += 10.0
 | 
						|
    accel[len(accel) // 2] = temp.as_reader()
 | 
						|
    logs = sorted(non_accel + accel, key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  replayed_logs = replay_process_with_name(name='locationd', lr=logs)
 | 
						|
  return get_select_fields_data(logs), get_select_fields_data(replayed_logs)
 | 
						|
 | 
						|
 | 
						|
class TestLocationdScenarios(unittest.TestCase):
 | 
						|
  """
 | 
						|
  Test locationd with different scenarios. In all these scenarios, we expect the following:
 | 
						|
    - locationd kalman filter should never go unstable (we care mostly about yaw_rate, roll, gpsOK, inputsOK, sensorsOK)
 | 
						|
    - faulty values should be ignored, with appropriate flags set
 | 
						|
  """
 | 
						|
 | 
						|
  @classmethod
 | 
						|
  def setUpClass(cls):
 | 
						|
    cls.logs = list(LogReader(get_url(TEST_ROUTE, TEST_SEG_NUM)))
 | 
						|
 | 
						|
  def test_base(self):
 | 
						|
    """
 | 
						|
    Test: unchanged log
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll: unchanged
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.BASE, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
 | 
						|
 | 
						|
  def test_gps_off(self):
 | 
						|
    """
 | 
						|
    Test: no GPS message for the entire segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll:
 | 
						|
      - gpsOK: False
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GPS_OFF, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
 | 
						|
    self.assertTrue(np.all(replayed_data['gps_flag'] == 0.0))
 | 
						|
 | 
						|
  def test_gps_off_midway(self):
 | 
						|
    """
 | 
						|
    Test: no GPS message for the second half of the segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll:
 | 
						|
      - gpsOK: True for the first half, False for the second half
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GPS_OFF_MIDWAY, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
 | 
						|
    self.assertTrue(np.diff(replayed_data['gps_flag'])[512] == -1.0)
 | 
						|
 | 
						|
  def test_gps_on_midway(self):
 | 
						|
    """
 | 
						|
    Test: no GPS message for the first half of the segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll:
 | 
						|
      - gpsOK: False for the first half, True for the second half
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GPS_ON_MIDWAY, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(1.5)))
 | 
						|
    self.assertTrue(np.diff(replayed_data['gps_flag'])[505] == 1.0)
 | 
						|
 | 
						|
  def test_gps_tunnel(self):
 | 
						|
    """
 | 
						|
    Test: no GPS message for the middle section of the segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll:
 | 
						|
      - gpsOK: False for the middle section, True for the rest
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GPS_TUNNEL, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
 | 
						|
    self.assertTrue(np.diff(replayed_data['gps_flag'])[213] == -1.0)
 | 
						|
    self.assertTrue(np.diff(replayed_data['gps_flag'])[805] == 1.0)
 | 
						|
 | 
						|
  def test_gyro_off(self):
 | 
						|
    """
 | 
						|
    Test: no gyroscope message for the entire segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: 0
 | 
						|
      - roll: 0
 | 
						|
      - sensorsOK: False
 | 
						|
    """
 | 
						|
    _, replayed_data = run_scenarios(Scenario.GYRO_OFF, self.logs)
 | 
						|
    self.assertTrue(np.allclose(replayed_data['yaw_rate'], 0.0))
 | 
						|
    self.assertTrue(np.allclose(replayed_data['roll'], 0.0))
 | 
						|
    self.assertTrue(np.all(replayed_data['sensors_flag'] == 0.0))
 | 
						|
 | 
						|
  def test_gyro_spikes(self):
 | 
						|
    """
 | 
						|
    Test: a gyroscope spike in the middle of the segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll: unchanged
 | 
						|
      - inputsOK: False for some time after the spike, True for the rest
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GYRO_SPIKE_MIDWAY, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
 | 
						|
    self.assertTrue(np.diff(replayed_data['inputs_flag'])[500] == -1.0)
 | 
						|
    self.assertTrue(np.diff(replayed_data['inputs_flag'])[694] == 1.0)
 | 
						|
 | 
						|
  def test_accel_off(self):
 | 
						|
    """
 | 
						|
    Test: no accelerometer message for the entire segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: 0
 | 
						|
      - roll: 0
 | 
						|
      - sensorsOK: False
 | 
						|
    """
 | 
						|
    _, replayed_data = run_scenarios(Scenario.ACCEL_OFF, self.logs)
 | 
						|
    self.assertTrue(np.allclose(replayed_data['yaw_rate'], 0.0))
 | 
						|
    self.assertTrue(np.allclose(replayed_data['roll'], 0.0))
 | 
						|
    self.assertTrue(np.all(replayed_data['sensors_flag'] == 0.0))
 | 
						|
 | 
						|
  def test_accel_spikes(self):
 | 
						|
    """
 | 
						|
    ToDo:
 | 
						|
    Test: an accelerometer spike in the middle of the segment
 | 
						|
    Expected Result: Right now, the kalman filter is not robust to small spikes like it is to gyroscope spikes.
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.ACCEL_SPIKE_MIDWAY, self.logs)
 | 
						|
    self.assertTrue(np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.2)))
 | 
						|
    self.assertTrue(np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.5)))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  unittest.main()
 | 
						|
 |