open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

224 lines
7.6 KiB

// Copyright (C) 2004, 2010 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpIpoptAlg.hpp 2167 2013-03-08 11:15:38Z stefan $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPIPOPTALG_HPP__
#define __IPIPOPTALG_HPP__
#include "IpIpoptNLP.hpp"
#include "IpAlgStrategy.hpp"
#include "IpSearchDirCalculator.hpp"
#include "IpLineSearch.hpp"
#include "IpMuUpdate.hpp"
#include "IpConvCheck.hpp"
#include "IpOptionsList.hpp"
#include "IpIterateInitializer.hpp"
#include "IpIterationOutput.hpp"
#include "IpAlgTypes.hpp"
#include "IpHessianUpdater.hpp"
#include "IpEqMultCalculator.hpp"
namespace Ipopt
{
/** @name Exceptions */
//@{
DECLARE_STD_EXCEPTION(STEP_COMPUTATION_FAILED);
//@}
/** The main ipopt algorithm class.
* Main Ipopt algorithm class, contains the main optimize method,
* handles the execution of the optimization.
* The constructor initializes the data structures through the nlp,
* and the Optimize method then assumes that everything is
* initialized and ready to go.
* After an optimization is complete, the user can access the
* solution through the passed in ip_data structure.
* Multiple calls to the Optimize method are allowed as long as the
* structure of the problem remains the same (i.e. starting point
* or nlp parameter changes only).
*/
class IpoptAlgorithm : public AlgorithmStrategyObject
{
public:
/**@name Constructors/Destructors */
//@{
/** Constructor. (The IpoptAlgorithm uses smart pointers for these
* passed-in pieces to make sure that a user of IpoptAlgoroithm
* cannot pass in an object created on the stack!)
*/
IpoptAlgorithm(const SmartPtr<SearchDirectionCalculator>& search_dir_calculator,
const SmartPtr<LineSearch>& line_search,
const SmartPtr<MuUpdate>& mu_update,
const SmartPtr<ConvergenceCheck>& conv_check,
const SmartPtr<IterateInitializer>& iterate_initializer,
const SmartPtr<IterationOutput>& iter_output,
const SmartPtr<HessianUpdater>& hessian_updater,
const SmartPtr<EqMultiplierCalculator>& eq_multiplier_calculator = NULL);
/** Default destructor */
virtual ~IpoptAlgorithm();
//@}
/** overloaded from AlgorithmStrategyObject */
virtual bool InitializeImpl(const OptionsList& options,
const std::string& prefix);
/** Main solve method. */
SolverReturn Optimize(bool isResto = false);
/** Methods for IpoptType */
//@{
static void RegisterOptions(SmartPtr<RegisteredOptions> roptions);
//@}
/**@name Access to internal strategy objects */
//@{
SmartPtr<SearchDirectionCalculator> SearchDirCalc()
{
return search_dir_calculator_;
}
//@}
static void print_copyright_message(const Journalist& jnlst);
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Default Constructor */
IpoptAlgorithm();
/** Copy Constructor */
IpoptAlgorithm(const IpoptAlgorithm&);
/** Overloaded Equals Operator */
void operator=(const IpoptAlgorithm&);
//@}
/** @name Strategy objects */
//@{
SmartPtr<SearchDirectionCalculator> search_dir_calculator_;
SmartPtr<LineSearch> line_search_;
SmartPtr<MuUpdate> mu_update_;
SmartPtr<ConvergenceCheck> conv_check_;
SmartPtr<IterateInitializer> iterate_initializer_;
SmartPtr<IterationOutput> iter_output_;
SmartPtr<HessianUpdater> hessian_updater_;
/** The multipler calculator (for y_c and y_d) has to be set only
* if option recalc_y is set to true */
SmartPtr<EqMultiplierCalculator> eq_multiplier_calculator_;
//@}
/** @name Main steps of the algorthim */
//@{
/** Method for updating the current Hessian. This can either just
* evaluate the exact Hessian (based on the current iterate), or
* perform a quasi-Newton update.
*/
void UpdateHessian();
/** Method to update the barrier parameter. Returns false, if the
* algorithm can't continue with the regular procedure and needs
* to revert to a fallback mechanism in the line search (such as
* restoration phase) */
bool UpdateBarrierParameter();
/** Method to setup the call to the PDSystemSolver. Returns
* false, if the algorithm can't continue with the regular
* procedure and needs to revert to a fallback mechanism in the
* line search (such as restoration phase) */
bool ComputeSearchDirection();
/** Method computing the new iterate (usually vialine search).
* The acceptable point is the one in trial after return.
*/
void ComputeAcceptableTrialPoint();
/** Method for accepting the trial point as the new iteration,
* possibly after adjusting the variable bounds in the NLP. */
void AcceptTrialPoint();
/** Do all the output for one iteration */
void OutputIteration();
/** Sets up initial values for the iterates,
* Corrects the initial values for x and s (force in bounds)
*/
void InitializeIterates();
/** Print the problem size statistics */
void PrintProblemStatistics();
/** Compute the Lagrangian multipliers for a feasibility problem*/
void ComputeFeasibilityMultipliers();
//@}
/** @name internal flags */
//@{
/** Flag indicating if the statistic should not be printed */
bool skip_print_problem_stats_;
//@}
/** @name Algorithmic parameters */
//@{
/** safeguard factor for bound multipliers. If value >= 1, then
* the dual variables will never deviate from the primal estimate
* by more than the factors kappa_sigma and 1./kappa_sigma.
*/
Number kappa_sigma_;
/** Flag indicating whether the y multipliers should be
* recalculated with the eq_mutliplier_calculator object for each
* new point. */
bool recalc_y_;
/** Feasibility threshold for recalc_y */
Number recalc_y_feas_tol_;
/** Flag indicating if we want to do Mehrotras's algorithm. This
* means that a number of options are ignored, or have to be set
* (or are automatically set) to certain values. */
bool mehrotra_algorithm_;
/** String specifying linear solver */
std::string linear_solver_;
//@}
/** @name auxiliary functions */
//@{
void calc_number_of_bounds(
const Vector& x,
const Vector& x_L,
const Vector& x_U,
const Matrix& Px_L,
const Matrix& Px_U,
Index& n_tot,
Index& n_only_lower,
Index& n_both,
Index& n_only_upper);
/** Method for ensuring that the trial multipliers are not too far
* from the primal estime. If a correction is made, new_trial_z
* is a pointer to the corrected multiplier, and the return value
* of this method give the magnitutde of the largest correction
* that we done. If no correction was made, new_trial_z is just
* a pointer to trial_z, and the return value is zero.
*/
Number correct_bound_multiplier(const Vector& trial_z,
const Vector& trial_slack,
const Vector& trial_compl,
SmartPtr<const Vector>& new_trial_z);
//@}
};
} // namespace Ipopt
#endif