You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							245 lines
						
					
					
						
							8.5 KiB
						
					
					
				
			
		
		
	
	
							245 lines
						
					
					
						
							8.5 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import importlib
 | |
| import math
 | |
| from collections import defaultdict, deque
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from cereal import car
 | |
| from common.numpy_fast import interp
 | |
| from common.params import Params
 | |
| from common.realtime import Ratekeeper, Priority, config_realtime_process
 | |
| from selfdrive.controls.lib.cluster.fastcluster_py import cluster_points_centroid
 | |
| from selfdrive.controls.lib.radar_helpers import Cluster, Track, RADAR_TO_CAMERA
 | |
| from selfdrive.swaglog import cloudlog
 | |
| from selfdrive.hardware import TICI
 | |
| 
 | |
| 
 | |
| class KalmanParams():
 | |
|   def __init__(self, dt):
 | |
|     # Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
 | |
|     # hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
 | |
|     assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
 | |
|     self.A = [[1.0, dt], [0.0, 1.0]]
 | |
|     self.C = [1.0, 0.0]
 | |
|     #Q = np.matrix([[10., 0.0], [0.0, 100.]])
 | |
|     #R = 1e3
 | |
|     #K = np.matrix([[ 0.05705578], [ 0.03073241]])
 | |
|     dts = [dt * 0.01 for dt in range(1, 21)]
 | |
|     K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689,  0.21372394,
 | |
|           0.22761098, 0.24069424, 0.253096,   0.26491023, 0.27621103, 0.28705801,
 | |
|           0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
 | |
|           0.35353899, 0.36200124]
 | |
|     K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
 | |
|           0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
 | |
|           0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
 | |
|           0.26393339, 0.26278425]
 | |
|     self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
 | |
| 
 | |
| 
 | |
| def laplacian_cdf(x, mu, b):
 | |
|   b = max(b, 1e-4)
 | |
|   return math.exp(-abs(x-mu)/b)
 | |
| 
 | |
| 
 | |
| def match_vision_to_cluster(v_ego, lead, clusters):
 | |
|   # match vision point to best statistical cluster match
 | |
|   offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
 | |
| 
 | |
|   def prob(c):
 | |
|     prob_d = laplacian_cdf(c.dRel, offset_vision_dist, lead.xStd[0])
 | |
|     prob_y = laplacian_cdf(c.yRel, -lead.y[0], lead.yStd[0])
 | |
|     prob_v = laplacian_cdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])
 | |
| 
 | |
|     # This is isn't exactly right, but good heuristic
 | |
|     return prob_d * prob_y * prob_v
 | |
| 
 | |
|   cluster = max(clusters, key=prob)
 | |
| 
 | |
|   # if no 'sane' match is found return -1
 | |
|   # stationary radar points can be false positives
 | |
|   dist_sane = abs(cluster.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
 | |
|   vel_sane = (abs(cluster.vRel + v_ego - lead.v[0]) < 10) or (v_ego + cluster.vRel > 3)
 | |
|   if dist_sane and vel_sane:
 | |
|     return cluster
 | |
|   else:
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
 | |
|   # Determine leads, this is where the essential logic happens
 | |
|   if len(clusters) > 0 and ready and lead_msg.prob > .5:
 | |
|     cluster = match_vision_to_cluster(v_ego, lead_msg, clusters)
 | |
|   else:
 | |
|     cluster = None
 | |
| 
 | |
|   lead_dict = {'status': False}
 | |
|   if cluster is not None:
 | |
|     lead_dict = cluster.get_RadarState(lead_msg.prob)
 | |
|   elif (cluster is None) and ready and (lead_msg.prob > .5):
 | |
|     lead_dict = Cluster().get_RadarState_from_vision(lead_msg, v_ego)
 | |
| 
 | |
|   if low_speed_override:
 | |
|     low_speed_clusters = [c for c in clusters if c.potential_low_speed_lead(v_ego)]
 | |
|     if len(low_speed_clusters) > 0:
 | |
|       closest_cluster = min(low_speed_clusters, key=lambda c: c.dRel)
 | |
| 
 | |
|       # Only choose new cluster if it is actually closer than the previous one
 | |
|       if (not lead_dict['status']) or (closest_cluster.dRel < lead_dict['dRel']):
 | |
|         lead_dict = closest_cluster.get_RadarState()
 | |
| 
 | |
|   return lead_dict
 | |
| 
 | |
| 
 | |
| class RadarD():
 | |
|   def __init__(self, radar_ts, delay=0):
 | |
|     self.current_time = 0
 | |
| 
 | |
|     self.tracks = defaultdict(dict)
 | |
|     self.kalman_params = KalmanParams(radar_ts)
 | |
| 
 | |
|     # v_ego
 | |
|     self.v_ego = 0.
 | |
|     self.v_ego_hist = deque([0], maxlen=delay+1)
 | |
| 
 | |
|     self.ready = False
 | |
| 
 | |
|   def update(self, sm, rr, enable_lead):
 | |
|     self.current_time = 1e-9*max(sm.logMonoTime.values())
 | |
| 
 | |
|     if sm.updated['carState']:
 | |
|       self.v_ego = sm['carState'].vEgo
 | |
|       self.v_ego_hist.append(self.v_ego)
 | |
|     if sm.updated['modelV2']:
 | |
|       self.ready = True
 | |
| 
 | |
|     ar_pts = {}
 | |
|     for pt in rr.points:
 | |
|       ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
 | |
| 
 | |
|     # *** remove missing points from meta data ***
 | |
|     for ids in list(self.tracks.keys()):
 | |
|       if ids not in ar_pts:
 | |
|         self.tracks.pop(ids, None)
 | |
| 
 | |
|     # *** compute the tracks ***
 | |
|     for ids in ar_pts:
 | |
|       rpt = ar_pts[ids]
 | |
| 
 | |
|       # align v_ego by a fixed time to align it with the radar measurement
 | |
|       v_lead = rpt[2] + self.v_ego_hist[0]
 | |
| 
 | |
|       # create the track if it doesn't exist or it's a new track
 | |
|       if ids not in self.tracks:
 | |
|         self.tracks[ids] = Track(v_lead, self.kalman_params)
 | |
|       self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
 | |
| 
 | |
|     idens = list(sorted(self.tracks.keys()))
 | |
|     track_pts = [self.tracks[iden].get_key_for_cluster() for iden in idens]
 | |
| 
 | |
|     # If we have multiple points, cluster them
 | |
|     if len(track_pts) > 1:
 | |
|       cluster_idxs = cluster_points_centroid(track_pts, 2.5)
 | |
|       clusters = [None] * (max(cluster_idxs) + 1)
 | |
| 
 | |
|       for idx in range(len(track_pts)):
 | |
|         cluster_i = cluster_idxs[idx]
 | |
|         if clusters[cluster_i] is None:
 | |
|           clusters[cluster_i] = Cluster()
 | |
|         clusters[cluster_i].add(self.tracks[idens[idx]])
 | |
|     elif len(track_pts) == 1:
 | |
|       # FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
 | |
|       cluster_idxs = [0]
 | |
|       clusters = [Cluster()]
 | |
|       clusters[0].add(self.tracks[idens[0]])
 | |
|     else:
 | |
|       clusters = []
 | |
| 
 | |
|     # if a new point, reset accel to the rest of the cluster
 | |
|     for idx in range(len(track_pts)):
 | |
|       if self.tracks[idens[idx]].cnt <= 1:
 | |
|         aLeadK = clusters[cluster_idxs[idx]].aLeadK
 | |
|         aLeadTau = clusters[cluster_idxs[idx]].aLeadTau
 | |
|         self.tracks[idens[idx]].reset_a_lead(aLeadK, aLeadTau)
 | |
| 
 | |
|     # *** publish radarState ***
 | |
|     dat = messaging.new_message('radarState')
 | |
|     dat.valid = sm.all_alive_and_valid() and len(rr.errors) == 0
 | |
|     radarState = dat.radarState
 | |
|     radarState.mdMonoTime = sm.logMonoTime['modelV2']
 | |
|     radarState.canMonoTimes = list(rr.canMonoTimes)
 | |
|     radarState.radarErrors = list(rr.errors)
 | |
|     radarState.carStateMonoTime = sm.logMonoTime['carState']
 | |
| 
 | |
|     if enable_lead:
 | |
|       leads_v3 = sm['modelV2'].leadsV3
 | |
|       if len(leads_v3) > 1:
 | |
|         radarState.leadOne = get_lead(self.v_ego, self.ready, clusters, leads_v3[0], low_speed_override=True)
 | |
|         radarState.leadTwo = get_lead(self.v_ego, self.ready, clusters, leads_v3[1], low_speed_override=False)
 | |
|     return dat
 | |
| 
 | |
| 
 | |
| # fuses camera and radar data for best lead detection
 | |
| def radard_thread(sm=None, pm=None, can_sock=None):
 | |
|   config_realtime_process(5 if TICI else 2, Priority.CTRL_LOW)
 | |
| 
 | |
|   # wait for stats about the car to come in from controls
 | |
|   cloudlog.info("radard is waiting for CarParams")
 | |
|   CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
 | |
|   cloudlog.info("radard got CarParams")
 | |
| 
 | |
|   # import the radar from the fingerprint
 | |
|   cloudlog.info("radard is importing %s", CP.carName)
 | |
|   RadarInterface = importlib.import_module(f'selfdrive.car.{CP.carName}.radar_interface').RadarInterface
 | |
| 
 | |
|   # *** setup messaging
 | |
|   if can_sock is None:
 | |
|     can_sock = messaging.sub_sock('can')
 | |
|   if sm is None:
 | |
|     sm = messaging.SubMaster(['modelV2', 'carState'], ignore_avg_freq=['modelV2', 'carState'])  # Can't check average frequency, since radar determines timing
 | |
|   if pm is None:
 | |
|     pm = messaging.PubMaster(['radarState', 'liveTracks'])
 | |
| 
 | |
|   RI = RadarInterface(CP)
 | |
| 
 | |
|   rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
 | |
|   RD = RadarD(CP.radarTimeStep, RI.delay)
 | |
| 
 | |
|   # TODO: always log leads once we can hide them conditionally
 | |
|   enable_lead = CP.openpilotLongitudinalControl or not CP.radarOffCan
 | |
| 
 | |
|   while 1:
 | |
|     can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
 | |
|     rr = RI.update(can_strings)
 | |
| 
 | |
|     if rr is None:
 | |
|       continue
 | |
| 
 | |
|     sm.update(0)
 | |
| 
 | |
|     dat = RD.update(sm, rr, enable_lead)
 | |
|     dat.radarState.cumLagMs = -rk.remaining*1000.
 | |
| 
 | |
|     pm.send('radarState', dat)
 | |
| 
 | |
|     # *** publish tracks for UI debugging (keep last) ***
 | |
|     tracks = RD.tracks
 | |
|     dat = messaging.new_message('liveTracks', len(tracks))
 | |
| 
 | |
|     for cnt, ids in enumerate(sorted(tracks.keys())):
 | |
|       dat.liveTracks[cnt] = {
 | |
|         "trackId": ids,
 | |
|         "dRel": float(tracks[ids].dRel),
 | |
|         "yRel": float(tracks[ids].yRel),
 | |
|         "vRel": float(tracks[ids].vRel),
 | |
|       }
 | |
|     pm.send('liveTracks', dat)
 | |
| 
 | |
|     rk.monitor_time()
 | |
| 
 | |
| 
 | |
| def main(sm=None, pm=None, can_sock=None):
 | |
|   radard_thread(sm, pm, can_sock)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   main()
 | |
| 
 |