open source driving agent
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

345 lines
10 KiB

// Copyright (C) 2004, 2008 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpMatrix.hpp 2472 2014-04-05 17:47:20Z stefan $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPMATRIX_HPP__
#define __IPMATRIX_HPP__
#include "IpVector.hpp"
namespace Ipopt
{
/* forward declarations */
class MatrixSpace;
/** Matrix Base Class. This is the base class for all derived matrix
* types. All Matrices, such as Jacobian and Hessian matrices, as
* well as possibly the iteration matrices needed for the step
* computation, are of this type.
*
* Deriving from Matrix: Overload the protected XXX_Impl method.
*/
class Matrix : public TaggedObject
{
public:
/** @name Constructor/Destructor */
//@{
/** Constructor. It has to be given a pointer to the
* corresponding MatrixSpace.
*/
Matrix(const MatrixSpace* owner_space)
:
TaggedObject(),
owner_space_(owner_space),
valid_cache_tag_(0)
{}
/** Destructor */
virtual ~Matrix()
{}
//@}
/**@name Operations of the Matrix on a Vector */
//@{
/** Matrix-vector multiply. Computes y = alpha * Matrix * x +
* beta * y. Do not overload. Overload MultVectorImpl instead.
*/
void MultVector(Number alpha, const Vector& x, Number beta,
Vector& y) const
{
MultVectorImpl(alpha, x, beta, y);
}
/** Matrix(transpose) vector multiply. Computes y = alpha *
* Matrix^T * x + beta * y. Do not overload. Overload
* TransMultVectorImpl instead.
*/
void TransMultVector(Number alpha, const Vector& x, Number beta,
Vector& y) const
{
TransMultVectorImpl(alpha, x, beta, y);
}
//@}
/** @name Methods for specialized operations. A prototype
* implementation is provided, but for efficient implementation
* those should be specially implemented.
*/
//@{
/** X = X + alpha*(Matrix S^{-1} Z). Should be implemented
* efficiently for the ExansionMatrix
*/
void AddMSinvZ(Number alpha, const Vector& S, const Vector& Z,
Vector& X) const;
/** X = S^{-1} (r + alpha*Z*M^Td). Should be implemented
* efficiently for the ExansionMatrix
*/
void SinvBlrmZMTdBr(Number alpha, const Vector& S,
const Vector& R, const Vector& Z,
const Vector& D, Vector& X) const;
//@}
/** Method for determining if all stored numbers are valid (i.e.,
* no Inf or Nan). */
bool HasValidNumbers() const;
/** @name Information about the size of the matrix */
//@{
/** Number of rows */
inline
Index NRows() const;
/** Number of columns */
inline
Index NCols() const;
//@}
/** @name Norms of the individual rows and columns */
//@{
/** Compute the max-norm of the rows in the matrix. The result is
* stored in rows_norms. The vector is assumed to be initialized
* of init is false. */
void ComputeRowAMax(Vector& rows_norms, bool init=true) const
{
DBG_ASSERT(NRows() == rows_norms.Dim());
if (init) rows_norms.Set(0.);
ComputeRowAMaxImpl(rows_norms, init);
}
/** Compute the max-norm of the columns in the matrix. The result
* is stored in cols_norms The vector is assumed to be initialized
* of init is false. */
void ComputeColAMax(Vector& cols_norms, bool init=true) const
{
DBG_ASSERT(NCols() == cols_norms.Dim());
if (init) cols_norms.Set(0.);
ComputeColAMaxImpl(cols_norms, init);
}
//@}
/** Print detailed information about the matrix. Do not overload.
* Overload PrintImpl instead.
*/
//@{
virtual void Print(SmartPtr<const Journalist> jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent=0,
const std::string& prefix="") const;
virtual void Print(const Journalist& jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent=0,
const std::string& prefix="") const;
//@}
/** Return the owner MatrixSpace*/
inline
SmartPtr<const MatrixSpace> OwnerSpace() const;
protected:
/** @name implementation methods (derived classes MUST
* overload these pure virtual protected methods.
*/
//@{
/** Matrix-vector multiply. Computes y = alpha * Matrix * x +
* beta * y
*/
virtual void MultVectorImpl(Number alpha, const Vector& x, Number beta, Vector& y) const =0;
/** Matrix(transpose) vector multiply.
* Computes y = alpha * Matrix^T * x + beta * y
*/
virtual void TransMultVectorImpl(Number alpha, const Vector& x, Number beta, Vector& y) const =0;
/** X = X + alpha*(Matrix S^{-1} Z). Prototype for this
* specialize method is provided, but for efficient
* implementation it should be overloaded for the expansion matrix.
*/
virtual void AddMSinvZImpl(Number alpha, const Vector& S, const Vector& Z,
Vector& X) const;
/** X = S^{-1} (r + alpha*Z*M^Td). Should be implemented
* efficiently for the ExpansionMatrix.
*/
virtual void SinvBlrmZMTdBrImpl(Number alpha, const Vector& S,
const Vector& R, const Vector& Z,
const Vector& D, Vector& X) const;
/** Method for determining if all stored numbers are valid (i.e.,
* no Inf or Nan). A default implementation always returning true
* is provided, but if possible it should be implemented. */
virtual bool HasValidNumbersImpl() const
{
return true;
}
/** Compute the max-norm of the rows in the matrix. The result is
* stored in rows_norms. The vector is assumed to be
* initialized. */
virtual void ComputeRowAMaxImpl(Vector& rows_norms, bool init) const = 0;
/** Compute the max-norm of the columns in the matrix. The result
* is stored in cols_norms. The vector is assumed to be
* initialized. */
virtual void ComputeColAMaxImpl(Vector& cols_norms, bool init) const = 0;
/** Print detailed information about the matrix. */
virtual void PrintImpl(const Journalist& jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent,
const std::string& prefix) const =0;
//@}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** default constructor */
Matrix();
/** Copy constructor */
Matrix(const Matrix&);
/** Overloaded Equals Operator */
Matrix& operator=(const Matrix&);
//@}
const SmartPtr<const MatrixSpace> owner_space_;
/**@name CachedResults data members */
//@{
mutable TaggedObject::Tag valid_cache_tag_;
mutable bool cached_valid_;
//@}
};
/** MatrixSpace base class, corresponding to the Matrix base class.
* For each Matrix implementation, a corresponding MatrixSpace has
* to be implemented. A MatrixSpace is able to create new Matrices
* of a specific type. The MatrixSpace should also store
* information that is common to all Matrices of that type. For
* example, the dimensions of a Matrix is stored in the MatrixSpace
* base class.
*/
class MatrixSpace : public ReferencedObject
{
public:
/** @name Constructors/Destructors */
//@{
/** Constructor, given the number rows and columns of all matrices
* generated by this MatrixSpace.
*/
MatrixSpace(Index nRows, Index nCols)
:
nRows_(nRows),
nCols_(nCols)
{}
/** Destructor */
virtual ~MatrixSpace()
{}
//@}
/** Pure virtual method for creating a new Matrix of the
* corresponding type.
*/
virtual Matrix* MakeNew() const=0;
/** Accessor function for the number of rows. */
Index NRows() const
{
return nRows_;
}
/** Accessor function for the number of columns. */
Index NCols() const
{
return nCols_;
}
/** Method to test if a given matrix belongs to a particular
* matrix space.
*/
bool IsMatrixFromSpace(const Matrix& matrix) const
{
return (matrix.OwnerSpace() == this);
}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** default constructor */
MatrixSpace();
/** Copy constructor */
MatrixSpace(const MatrixSpace&);
/** Overloaded Equals Operator */
MatrixSpace& operator=(const MatrixSpace&);
//@}
/** Number of rows for all matrices of this type. */
const Index nRows_;
/** Number of columns for all matrices of this type. */
const Index nCols_;
};
/* Inline Methods */
inline
Index Matrix::NRows() const
{
return owner_space_->NRows();
}
inline
Index Matrix::NCols() const
{
return owner_space_->NCols();
}
inline
SmartPtr<const MatrixSpace> Matrix::OwnerSpace() const
{
return owner_space_;
}
} // namespace Ipopt
// Macro definitions for debugging matrices
#if COIN_IPOPT_VERBOSITY == 0
# define DBG_PRINT_MATRIX(__verbose_level, __mat_name, __mat)
#else
# define DBG_PRINT_MATRIX(__verbose_level, __mat_name, __mat) \
if (dbg_jrnl.Verbosity() >= (__verbose_level)) { \
if (dbg_jrnl.Jnlst()!=NULL) { \
(__mat).Print(dbg_jrnl.Jnlst(), \
J_ERROR, J_DBG, \
__mat_name, \
dbg_jrnl.IndentationLevel()*2, \
"# "); \
} \
}
#endif // #if COIN_IPOPT_VERBOSITY == 0
#endif