You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							118 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
	
	
							118 lines
						
					
					
						
							4.1 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import gc
 | 
						|
import math
 | 
						|
import time
 | 
						|
import ctypes
 | 
						|
import numpy as np
 | 
						|
from pathlib import Path
 | 
						|
from typing import Tuple, Dict
 | 
						|
 | 
						|
from cereal import messaging
 | 
						|
from cereal.messaging import PubMaster, SubMaster
 | 
						|
from cereal.visionipc import VisionIpcClient, VisionStreamType
 | 
						|
from openpilot.common.swaglog import cloudlog
 | 
						|
from openpilot.common.params import Params
 | 
						|
from openpilot.common.realtime import set_realtime_priority
 | 
						|
from openpilot.selfdrive.modeld.constants import ModelConstants
 | 
						|
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
 | 
						|
 | 
						|
NAV_INPUT_SIZE = 256*256
 | 
						|
NAV_FEATURE_LEN = 256
 | 
						|
NAV_DESIRE_LEN = 32
 | 
						|
NAV_OUTPUT_SIZE = 2*2*ModelConstants.IDX_N + NAV_DESIRE_LEN + NAV_FEATURE_LEN
 | 
						|
MODEL_PATHS = {
 | 
						|
  ModelRunner.SNPE: Path(__file__).parent / 'models/navmodel_q.dlc',
 | 
						|
  ModelRunner.ONNX: Path(__file__).parent / 'models/navmodel.onnx'}
 | 
						|
 | 
						|
class NavModelOutputXY(ctypes.Structure):
 | 
						|
  _fields_ = [
 | 
						|
    ("x", ctypes.c_float),
 | 
						|
    ("y", ctypes.c_float)]
 | 
						|
 | 
						|
class NavModelOutputPlan(ctypes.Structure):
 | 
						|
  _fields_ = [
 | 
						|
    ("mean", NavModelOutputXY*ModelConstants.IDX_N),
 | 
						|
    ("std", NavModelOutputXY*ModelConstants.IDX_N)]
 | 
						|
 | 
						|
class NavModelResult(ctypes.Structure):
 | 
						|
  _fields_ = [
 | 
						|
    ("plan", NavModelOutputPlan),
 | 
						|
    ("desire_pred", ctypes.c_float*NAV_DESIRE_LEN),
 | 
						|
    ("features", ctypes.c_float*NAV_FEATURE_LEN)]
 | 
						|
 | 
						|
class ModelState:
 | 
						|
  inputs: Dict[str, np.ndarray]
 | 
						|
  output: np.ndarray
 | 
						|
  model: ModelRunner
 | 
						|
 | 
						|
  def __init__(self):
 | 
						|
    assert ctypes.sizeof(NavModelResult) == NAV_OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
 | 
						|
    self.output = np.zeros(NAV_OUTPUT_SIZE, dtype=np.float32)
 | 
						|
    self.inputs = {'input_img': np.zeros(NAV_INPUT_SIZE, dtype=np.uint8)}
 | 
						|
    self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.DSP, True, None)
 | 
						|
    self.model.addInput("input_img", None)
 | 
						|
 | 
						|
  def run(self, buf:np.ndarray) -> Tuple[np.ndarray, float]:
 | 
						|
    self.inputs['input_img'][:] = buf
 | 
						|
 | 
						|
    t1 = time.perf_counter()
 | 
						|
    self.model.setInputBuffer("input_img", self.inputs['input_img'].view(np.float32))
 | 
						|
    self.model.execute()
 | 
						|
    t2 = time.perf_counter()
 | 
						|
    return self.output, t2 - t1
 | 
						|
 | 
						|
def get_navmodel_packet(model_output: np.ndarray, valid: bool, frame_id: int, location_ts: int, execution_time: float, dsp_execution_time: float):
 | 
						|
  model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(NavModelResult)).contents
 | 
						|
  msg = messaging.new_message('navModel')
 | 
						|
  msg.valid = valid
 | 
						|
  msg.navModel.frameId = frame_id
 | 
						|
  msg.navModel.locationMonoTime = location_ts
 | 
						|
  msg.navModel.modelExecutionTime = execution_time
 | 
						|
  msg.navModel.dspExecutionTime = dsp_execution_time
 | 
						|
  msg.navModel.features = model_result.features[:]
 | 
						|
  msg.navModel.desirePrediction = model_result.desire_pred[:]
 | 
						|
  msg.navModel.position.x = [p.x for p in model_result.plan.mean]
 | 
						|
  msg.navModel.position.y = [p.y for p in model_result.plan.mean]
 | 
						|
  msg.navModel.position.xStd = [math.exp(p.x) for p in model_result.plan.std]
 | 
						|
  msg.navModel.position.yStd = [math.exp(p.y) for p in model_result.plan.std]
 | 
						|
  return msg
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
  gc.disable()
 | 
						|
  set_realtime_priority(1)
 | 
						|
 | 
						|
  # there exists a race condition when two processes try to create a
 | 
						|
  # SNPE model runner at the same time, wait for dmonitoringmodeld to finish
 | 
						|
  cloudlog.warning("waiting for dmonitoringmodeld to initialize")
 | 
						|
  if not Params().get_bool("DmModelInitialized", True):
 | 
						|
    return
 | 
						|
 | 
						|
  model = ModelState()
 | 
						|
  cloudlog.warning("models loaded, navmodeld starting")
 | 
						|
 | 
						|
  vipc_client = VisionIpcClient("navd", VisionStreamType.VISION_STREAM_MAP, True)
 | 
						|
  while not vipc_client.connect(False):
 | 
						|
    time.sleep(0.1)
 | 
						|
  assert vipc_client.is_connected()
 | 
						|
  cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
 | 
						|
 | 
						|
  sm = SubMaster(["navInstruction"])
 | 
						|
  pm = PubMaster(["navModel"])
 | 
						|
 | 
						|
  while True:
 | 
						|
    buf = vipc_client.recv()
 | 
						|
    if buf is None:
 | 
						|
      continue
 | 
						|
 | 
						|
    sm.update(0)
 | 
						|
    t1 = time.perf_counter()
 | 
						|
    model_output, dsp_execution_time = model.run(buf.data[:buf.uv_offset])
 | 
						|
    t2 = time.perf_counter()
 | 
						|
 | 
						|
    valid = vipc_client.valid and sm.valid["navInstruction"]
 | 
						|
    pm.send("navModel", get_navmodel_packet(model_output, valid, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, dsp_execution_time))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  main()
 | 
						|
 |